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MOTIVATION, BACKGROUND, and OBJECTIVE

Convolutional Neural Networks and AlexNet

The use of neural networks has become increasingly popular for many applications. This class of
algorithms typically uses pre-labeled training data to learn patterns that are consistently correlated
with given labels. Subsequently, the developed knowledge is used to properly classify new observations.

More specifically, Convolutional Neural Networks (CNN) have proven particularly effective in image
recognition. As the name implies, such networks contain at least one convolutional layer1,Iwhich reduce
overall complexity, yielding simpler, more efficient, and easier to train models. While many architectures
have been developed on the widely used training databases ImageNet and MNISTII , we choose to explore
a seminal CNN architecture called AlexNet.

A deep CNN developed at the ImageNet LSVRC-2012 contest, AlexNet significantly outperformed
competitor models in classifying high-resolution images in the ImageNet database. In brief, AlexNet
utilizes 5 convolutional layers and 3 fully connected layers with final softmax combined with a variety
of “new and unusual features [to] improve its performance.”III

Hyperparameters

Neural networks require the tuning of a number of different hyperparameters, pre-set (i.e. before
training) variables which determine the network structure and/or the way a network is trained.IV,V

Such hyperparameters include, but are not limited to, activation functions, learning rate, batch size,
number of layers, regularization methods like dropout, number of epochs, and normalization. Optimizing
hyperparameters can become a substantial task due to the sheer number of possibilities. Even more,
hyperparameter settings drastically affect the performance of the network: researchers employ a number
of techniques, such as random or grid searches, to find an optimal combination hyperparameter settings.

Objective

We deploy an experimental approach to hyperparameter tuning in the context of AlexNet. We
investigate the “new and unusual features” embedded within AlexNet, amongst other hyperparameters
known to influence accuracy to screen for the most important hyperparameters in an AlexNet-type CNN.

EXPERIMENT

Neural Network (“The Model”)

Using TensorFlow and the Keras 2 functional API in Python, we built a version of the AlexNet CNN,
which follows the guidance of the actual AlexNet authors and a few additional web sources.VI,VII,VIII

Since our objective is to identify which hyperparameters are most important in AlexNet-type CNNs,
we attempt to emulate the original structure of AlexNet fairly closely.

It is important to note, however, that the AlexNet-type CNN we utilized in our data collection
varies from the original application of AlexNet on the ImageNet dataset. AlexNet utilized a highly
efficient GPU implementation and took six days to train a single model – due to time and hardware
limitations, this was not a feasible implementation for our screening experiment. Instead, we utilize a
smaller AlexNet-type CNN with max 3 convolutional layers and 2 fully connected layers with a final
softmax on the more manageable MNIST dataset, compared to the original 8 layers with a final softmax.
As the MNIST dataset also involves images and is sufficiently large, we expect this implementation will
still allow us to collect and analyze useful data to reach our experiment’s objective. We also chose a
practical, specific set of hyperparameters to tune and test for importance.

1Convolutional layers derive their name from the convolution operation in mathematics and can be thought of as a
“many-to-one” type mapping. The use of convolutional layers, thus, allows each layer to consider local information (i.e.
dependencies such as neighboring pixels in an image).

2Keras provides a high-level interface with which to quickly develop and test neural networks.
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Variables 3

As mentioned, the original AlexNet authors incorporated “new and unusual features” to improve
model accuracy, including the ReLU activation function, normalization, dropout, and additional con-
volutional layers (a deeper network). The authors claim that without these features, their model’s
performance significantly decreases. We test the importance of these and three other hyperparame-
tersIX:

1. Learning Rate (A): Refers to step size for the underlying gradient descent algorithm. The authors
used an “equal learning rate for all layers, which [was] adjusted manually throughout training.
The heuristic [they] followed was to divide the learning rate by 10 when the validation error rate
stopped improving with the current learning rate. The learning rate was initialized at 0.01 and
reduced three times prior to termination.”X Learning rate is one of the most important tuning
parameters in a neural network, as without a properly tuned learning rate, neural networks can
often fail to converge. XI We test learning rate settings of 0.01 and 0.0001 in our initial runs.4

2. Number of Epochs (B): Refers to the number of times the entire training dataset is shown to the
network while training. Intuitively, number of epochs are generally maximized, allowing for more
opportunities to learn. However, too large a number can result in overfitting. We test our model
with 2 and 10 epochs, based on prior domain knowledge and experience with the MNIST dataset.

3. Batch Size (C): Refers to the number of training examples given to the network at each pass
before network parameter are updated. Similar to number of epochs, this is not a main tuning
parameter for the authors; however, we know inherently that tuning batch size can improve model
accuracy. For simplicity, we test batch sizes of 50 and 100.

4. Dropout (D): Forces a more robust model and refers to the dropping of neurons throughout the
learning process. The authors claim that “without dropout, [the] network exhibits substantial
overfitting. Dropout roughly doubles the number of iterations required to converge.” XII We test
the model with and without the dropout in the fully connected layers.

5. Activation Function (E): Refers to the introduction of nonlinearity. AlexNet was the first CNN
to use the ReLU function in this capacity.XIII Until this introduction, the standard activation
function was tanh. The authors “applied [ReLU] to the output of every convolutional and fully-
connected layer” XIV and claim that “deep convolutional neural networks with ReLUs train several
times faster than their equivalents with tanh units.” XV We test the effects of ReLU and tanh
activations.

6. Additional Convolutional Layer (F ): Refers to additional depth, which the authors write “seems
to be important. . . removing any convolutional layer. . . resulted in inferior performance.” XVI As
such, we tested the model with 2 and 3 convolutional layers.

7. Normalization (G): Rescales data by normalizing the output of each activation layer (subtracts
batch mean and divides by batch standard deviation). The authors claim normalization reduced
their error rates by 1-2%.XVII As such, we test the model without and with batch normalization.

Recorded Response

To evaluate the effect(s) of our variables, we recorded test accuracy.5

3The two levels listed for each variable correspond to -1 and 1 in our model matrix, respectively. See Appendix B.
4Analysis of our initial experiment’s data indicated that factor settings for learning rate needed to be further tuned

(similar to the AlexNet authors’ approach). Refer to Analysis portion for further detail and revised factor settings.
5Accuracy is a percentage calculated as the number of correctly identified digits over the total number of digits in the

test data.
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Design

It is clear from our discussion of variables, that we are employing a 2k factorial design (k = 7), as
each variable (factor) was tested at two levels. Due to computing limitations, we ultimately settled
on a 27−2

IV randomized block design with 2 replicates, blocked by experimenter (student) with defining
relationship I = ABCDF = ABDGE = CEFG (Appendix B). Overall, the experiment contains 32
runs and 64 total observations. Since we are using a resolution IV design, none of our main effects are
aliased with two-factor interactions (me = 3fi, 2fi = 2fi). This is a simpler aliasing structure and
should allow us to more clearly and easily see distinct results.6,XVIII

Note that the findings from our initial runs/experiment led us to run a follow-up experiment with
tuned factor levels for learning rate. All design, randomization, and blocking principles discussed herein
apply throughout the various iterations of our experiment.

Blocking and Randomization

We utilize a randomized blocked design to reduce/control variability that could alter the reliability of
our results (nuisance variables, e.g. version of Python, TensorFlow, machine processing). Each student
conducted experiments and collected data independently using the same model, yielding two replicates.
Run orders were randomized separately for each iteration7 based on different random seeds.

Data Collection Procedures

We executed our AlexNet CNN Python scripts8 overnight on the same dates. After each run, test
accuracy and training time data were automatically written to CSV via Python on our respective
machines. Each script execution took approximately 3 hours.

ANALYSIS

Part I - Initial Experiment

Exploratory Data Analysis

We read our collective data into R, first performing initial exploratory data analysis by constructing
boxplots of accuracy as a function of each factor (Appendix A, Fig. 1). From these basic plots, we saw
learning rate (A) to be the most obvious, significant factor influencing test accuracy. In this preliminary
stage, we also see that normalization (G) may affect accuracy. Interestingly, we also see a large amount
of variation between blocks. Our half normal plot of main effects verifies these results (Appendix A,
Fig. 2). Lastly, our data appears to have some significant outliers and influential points.

Main Effects Model

We proceeded by running an initial linear model on only the main effects, confirming that Learning
Rate (A) is significant at α = 5%. While block and normalization (G) appeared to be significant factors
in our exploratory analysis, the main effects model does not necessarily support these results (Appendix
A, Fig. 3). Further, a quick residual analysis of this main effects model showed poor results (Appendix
A, Fig. 4), as 1) the data do not appear to satisfy the condition of homoscedasticity and 2) the Normal
Q-Q plot, while showing no obvious patterns, re-highlighted a potential issue with outliers.

StepAIC – ME + Two-Factor Interactions

To follow, based on the poor residual plots, we concluded that we should incorporate some interaction
effects to improve the model. We run both forward and backward step-wise regression capturing all
main effects and their two-factor interactions (we assume that three-factor and higher-level interactions

6Our model matrix can be found in Appendix B. The full alias structure can be found in source XVIII.
7We were required to run two iterations of our experiment, as our initial factor settings for learning rate needed to be

further tuned. As such, there were four total instances of data collection (two per block/researcher).
8See Appendix C.
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are negligible). We do this to identify the best model that incorporates two-factor interactions without
overfitting. Note, in our resolution IV design, no main effects are aliased with 2-factor interactions.

StepAIC created a final model with A, B : D, C : E, C : F , and C : G significant at α = 10%
(Appendix A, Fig. 6). Block was not significant at this α, but appears to be significant in the half
normal plot (Appendix A, Fig. 5). Based on these results, we build a final model (Appendix A, Fig. 7)

Accuracy ∼ A+B + C +D + E + F +G+B : D + C : E + C : F + C : G+Block

R2 and Adjusted R2 are not particularly high in this model at 0.4389 and 0.3069, respectively.
However, as this is a screening experiment to determine which hyperparameters are most important
in a neural network, we are not overly concerned with fit/prediction capabilities. We proceeded by
analyzing the residuals of this “final” model, which still showed poor results (Appendix A, Fig. 8).
Specifically, the plot of residuals vs. fitted values shows a distinct linear relationship, with a negative
slope. In addition, the Normal Q-Q plot shows a slightly s-shaped curve with tails. After seeing these
results in the residual analysis, we attempted to transform the response variable, accuracy. However,
no transformation, including log, sqrt, or power, appeared to improve the residuals9.

Outliers

Upon closer inspection of the pattern in the plot of residuals vs. fitted values (Appendix A, Fig. 8),
we saw that most of the unusual variability was clustered towards the lower accuracy rates (fitted values
of approx. 0.5 to 0.8) – based on our domain knowledge of neural networks, we developed a suspicion
that runs with the higher learning rate (A = −1) might be exhibiting a convergence issue.10,XIX

To address this suspicion, we removed outliers from our dataset.11 In reviewing the outlier dataset,
we saw that all of the observations were indeed run with the higher learning rate of 0.01, confirming our
initial suspicion. Following the removal of these outliers, we re-ran the entire analysis discussed above
(Appendix A, Fig. 9-14). This time, our StepAIC model showed almost all main effects and two-factor
interactions to be significant at α = 5% (Appendix A, Fig. 10-11), learning rate (A) still being the most
significant. Block was no longer significant.

Once again, we reviewed the residual plots (Appendix A, Fig.12) and saw much improvement, as
there was no longer a negative sloping line in the plot of residuals vs. fitted values. However, the
residuals still do not satisfy the condition of homoscedasticity. In addition, the s-shaped pattern still
remained on the Normal Q-Q plot. Again, we tried a log-transform on the response, which improved
the Normal Q-Q plot. Still, we see some minor deviations at the tails (Appendix A, Fig. 13-14).

We acknowledge that we cannot reasonably rely on the subset data, as we have no way of knowing
whether we truly only removed noise and not signal. As such, based on these initial findings and residual
analysis, we ran a follow-up experiment.

Part II - Follow-Up Experiment (Learning Rate factor settings adjusted)
We re-ran our entire experiment with better-tuned factor settings on learning rate (reduced the lower

factor setting by a factor of 10), a similar methodology employed by the authors of AlexNet (A = −1
corresponds to learning rate = 0.001 and A = +1 corresponds to learning rate = 0.0001)12.

In this second iteration, we continued with the same analysis and re-ran a main effects model and
StepAIC with all main effects and two-factor interactions (note that we maintained the log transform
on our response variable, per our first round of analysis). Our new main effects model showed that
learning rate, again, was significant, along with Number of Epochs (B) (Appendix A, Fig. 15-16). Still,

9R output and plots from this exercise intentionally omitted.
10Too large a step size can cause the gradient algorithm to consistently miss the local optima, causing training to

diverge.
11Outliers were defined as observations with accuracy greater than or less than 1.5 ± IQR.
12See Appendix B.
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we believe that important two-factor interactions are not included in this model, so consistent with our
initial experiment, we run a StepAIC (Appendix A, Fig. 17-18). The results showed that almost all
main effects (except the additional convolutional layer factor) and many two-factor interactions were
significant at α = 5%.13 This time, when performing the residual analysis (Appendix A, Fig. 19), we
noticed no obvious pattern in the plot of residuals vs. fitted values. Further, the data did not benefit
from any additional transformations. The normal Q-Q plot also shows data mostly on a straight line,
with minor deviations at the tails. We acknowledge that there are leverage/influential points in the data,
but do not feel we have majorly violated the residual assumptions of homoscedasticity and normally
distributed residuals. As such, the final model through StepAIC is as follows:

log(Accuracy) ∼A+B + C +D + E + F +G+

A : B + A : C + A : D + A : E + A : F + A : G+

B : C +B : D +B : G+ C : D + C : E + C : G+D : E +D : F +D : G

See Appendix A, Fig. 18 for the full results of our final model. This includes the relative significances
of the various factors. Based on the final two levels for each factor in our experiment, the optimal settings
for this particular implementation of the AlexNet CNN would thus be:

A = −1, B = 1, C = −1, D = −1, E = −1, F = −1, G = −1

In terms of actuals variables:

CONCLUSION AND POSSIBLE FUTURE WORK

Our experiments support several of the AlexNet authors’ findings on important factors for improved
image recognition. The clearest result is that learning rate is a crucial hyperparameter that requires
continuous refinement throughout the training process: a poor choice of learning rate can outweigh the
positive effect(s) of other well-chosen hyperparameters. In addition, we confirmed that longer training
time (in terms of epochs) and ReLU activations tend to improve performance.

However, our results also contradict some of the authors’ conclusions. First, adding an additional
convolutional layer was not a significant factor. Further, dropout and normalization were actually found
to lead to poorer performance within the context of our experiment. We suspect this may be because
our CNN implementation used the smaller MNIST dataset, and these particular features (focused on
overfitting) may not have been as useful for this less complex dataset. We also see that there are
several important interaction effects that have significant consequences for performance. Some such
interactions might even be more important than the main effects of the factors themselves (e.g., the
interaction between dropout and activation function might be more influential for accuracy than the
main effect for either of these factors individually). This suggests that a great deal of care must be
taken in the selection of hyperparameter settings in the development of CNNs.

Further investigation could test these hypotheses, but even more, we might test whether these same
factors have significant effects on training time, as practitioners constantly seek a balance of accuracy and
training time (i.e. overall efficiency). It might be that long training time generally improves accuracy, as
we observed here, but that real-world constraints limit this luxury. Similarly, ReLU activation functions
might prove to be more important than other factors within a broader context of accuracy and training
time. It seems clear that the ultimate key to achieving a network with optimal performance is balancing
all of these important hyperparameters in the context of the complexity of the data at hand.

13Interaction plots have been excluded from this report due to the large number of plots.
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Figure 1: Exploratory Data Analysis - Boxplots (Initial Experiment) 
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Figure 2: Half-Normal Plot - Main Effects Model (Initial Experiment) 

 
 
 
 
 

 
 

Figure 3: R Output - Main Effects Model (Initial Experiment) 
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Figure 4: Residual Plots - Main Effects (Initial Experiment) 

 
 
 
 
 

 
Figure 5: Half-Normal Plot - Main Effects and Two-Factor Interactions (Initial Experiment) 
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Figure 6: R Output - StepAIC Model with Main Effects and 2fi (Initial Experiment) 
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Figure 7: R Output - Final Model (Initial Experiment) 
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Figure 8: Residual Plots - Final Model (Initial Experiment) 

 
 
 
 
 

 
 

Figure 9: Half-Normal Plot - Main Effects, Outliers Removed (Initial Experiment) 
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Figure 10: Half-Normal Plot - Main Effects and Two-Factor Interactions, Outliers Removed  
(Initial Experiment) 
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Figure 11: R Output - StepAIC Model with Main Effects and 2fi, Outliers Removed  
(Initial Experiment) 
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Figure 12: Residual Plots - StepAIC model, Outliers Removed (Initial Experiment) 
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Figure 13: Half-Normal Plot – Main Effects and 2FI with log transformation, Outliers Removed 
(Initial Experiment) 

 
 
 
 
 
 

 
 

Figure 14: Residual Plot - StepAIC model with log transformation, Outliers Removed  
(Initial Experiment) 
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Figure 15: Half-Normal Plot – Main Effects (Follow-Up Experiment) 

 
 
 

 
 

Figure 16: R Output - Main Effects Model (Follow-Up Experiment) 



Appendix A - Figures 
 

 

Appendix A - 13 

 
 

Figure 17: Half-Normal Plot - Main Effects and Two-Factor Interactions with log transformation 
(Follow-Up Experiment) 

 

 
 

Figure 18: StepAIC Model with Main Effects and 2fi and log transformation  
(Follow-Up Experiment) 
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Figure 19: Residual Plot - StepAIC "Final" Model (Follow-Up Experiment) 
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