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Recommended resources

The previous set of slides focused on probability, random variables, and relationships
between random variables. In these slides, we will deal with data, estimation, and
statistics. We will also review linear algebra and regression.

Useful resources

1. Foundations of Agnostic Statistics - Aronow and Miller (2019) [link] - part 2

2. Elements of Statistical Learning - Hastie et al (2009) - chapter 3 [link]

3. Matrix Algebra - Gentle (2007) [link]

4. Causal Inference: the Mixtape - Cunningham (2021) [link] - chapter 2

5. Statistical Rethinking (Videos) - McElreath (2022) [link]

These slides draw heavily from 1.
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https://www.cambridge.org/core/books/foundations-of-agnostic-statistics/684756357E7E9B3DFF0A8157FB2DCECA
https://hastie.su.domains/ElemStatLearn/
https://link.springer.com/book/10.1007/978-0-387-70873-7
https://mixtape.scunning.com/
https://www.youtube.com/playlist?list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN
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Motivating statistics

Statistics aims to learn features of populations of units or people despite not having
access to the full population.

We aim to estimate things like expected values, variance, correlation, and best predictors
for the population using the sample of data we do have access to.

Since we do not have access to the underlying random variables directly we must infer
from the data we do have what these quantities might be. This involves uncertainty and
the quantification of uncertainty.

Have in your mind that our data is drawn from some joint probability distribution over
random variables that represents the real-world process we are studying. In this way we
build on the probability theory we saw last time.
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IID Random Variables

We are studying some set of units. Each unit might have multiple attributes. We consider
each attribute for each unit to be a random variable.

Example

For UCLA students, each person’s height is a random variable as is each person’s weight.
There are different probabilities for height and weight for each person. So we have two
random variables for each person. Height and weight for each person are likely
dependent. What about two people’s height? How do these relate?

We often make some simplifying assumptions: that different people’s heights are
independent and that they are identically distributed (IID).

Would this make sense for an attribute for whether or not each person has COVID?
Probably not - one person having COVID likely depends on how many people around
them have COVID. So the IID assumption has limitations.
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IID Random Variables

The discussion today will assume that we have IID observations.

Definition (Independent and identically distributed (IID))

Let X1, . . . ,Xn be random variables with CDFs F1, . . . ,Fn. Let FA denote the joint CDF
of the RVs with indices in the set A. Then X1, . . . ,Xn are IID if

• Mutually independent: FA((xi )i∈A) =
∏

i∈A Fi (xi ),
∀A ⊂ {1, . . . , n}, ∀(x1, . . . , xn) ∈ Rn.

• Identically distributed: Fi (x) = Fj(x), ∀i , j ⊂ {1, . . . , n},∀x ∈ R.

We take a draw from a random variable X and then take another draw and another etc.
in such a way that the different draws are independent, but they all come from an
identical random process.
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The sample mean
Assuming IID random variables, as our sample of observations of draws from the random
variable X grows larger, we are better able to estimate features of the distribution of X .

Definition (Sample mean)

For IID RVs X1, . . . ,Xn, the sample mean is X̄ = 1
n

∑n
i=1 Xi .

Note that since X̄ is a function of RVs, it is itself an RV.

Expected value of sample mean is population mean

For IID RVs X1, . . . ,Xn, E[X̄ ] = E[X ].

Sampling variance of sample mean

For IID RVs X1, . . . ,Xn, the sampling variance (how much variation we can expect in the

sample mean across different hypothetical draws of n observations) is V [X̄ ] = V [X ]
n .

V [X̄ ] decreases as n increases.
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Law of large numbers

Definition (Convergence in probability)

Let (T(1),T(2), . . . ) be a sequence of RVs and let c ∈ R. T(n) converges in probability to

c if, ∀ϵ > 0, limn→∞ Pr
[
|T(n) − c | ≤ ϵ

]
= 1. Write T̄(n)

p→ c.
(As n goes to infinity, it becomes extremely likely that T(n) will be extremely close to c .)

Weak law of large numbers

For IID RVs X1, . . . ,Xn, let X̄(n) =
1
n

∑n
i=1 Xi . Then X̄(n)

p→ E[X ].

As n gets large, X̄ becomes more likely to approximate E[X ] to arbitrary precision.
[R demo]
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Estimation

Let θ be some feature (e.g., mean or variance) of the RV X . θ is called an estimand.
We observe n IID draws of X : X = (X1, . . . ,Xn)

⊤.
An estimator of θ is an RV θ̂ = h(X) = h(X1, . . . ,Xn). (e.g., sample mean)
Estimators take values called estimates.

Example

Consider a coin flip represented by a Bernoulli RV. We want to estimate the probability of
heads (our estimand). We might consider the following estimators. Not all of these
provide equally good estimates.

• [max(X1, . . . ,Xn) + min(X1, . . . ,Xn)]/2

• ∑
Xi

• 1/n
∑

Xi
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Bias

Definition (Unbiasedness)

An estimator θ̂ is unbiased for θ if E[θ̂] = θ.

Definition (Bias)

The bias of θ̂ for estimating θ is E[θ̂]− θ.

Bias tells us the difference between the average values of the estimator and the true
value. Unbiased estimators have zero bias. Unbiasedness is a useful property but it is not
always the most important element of an estimator.
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Features of distributions of estimators

Definition (Sampling variance of an estimator)

The sampling variance of θ̂ is V [θ̂]. This is the variance in estimates of θ̂ from repeated

samples. Recall that the sampling variance of the sample mean is V [X̄ ] = V [X ]
n .

Definition (Standard error of an estimator)

The standard error of θ̂ is
√
V [θ̂].

Definition (Mean squared error (MSE) of an estimator)

The MSE of θ̂ in estimating θ is E[(θ̂ − θ)2] = V [θ̂] = (E[θ̂]− θ)2 = Variance + (Bias)2.

Definition (Consistency)

An estimator θ̂ is consistent for θ if θ̂
p→ θ.

(As n gets large, θ̂ becomes more likely to approximate θ to arbitrary precision.) 11 / 37



Sample variance

Definition (Sample variance)

We might try to estimate the variance of X using X̄ 2 − X̄ 2 (just plug in sample means
into V [X ] = E[X 2]− E[X ]2). It turns out that E[X̄ 2 − X̄ 2] = n−1

n V [X ] and is biased.

Instead we can use V̂ [X ] = n
n−1

(
X̄ 2 − X̄ 2

)
, which is unbiased.

Properties of sample variance

The sample variance is unbiased and consistent for the variance of X .

• E
[
V̂ [X ]

]
= V [X ]

• V̂ [X ]
p→ V [X ]

Sample variance (V̂ [X ], an estimator of variance of X ) is different from the sampling
variance of an estimator (V [θ̂], variance of the distribution of θ̂). We can also have
estimators for the sampling variance of an estimator: V̂ [θ̂]. [Really try to understand this.]
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Convergence in distribution and standardized
sample mean

Definition (Convergence in distribution)

Let (T(1),T(2), . . . ) be a sequence of RVs with CDFs (F(1),F(2), . . . ). Let T be a RV
with CDF F . Then T(n) converges in distribution to T if, ∀t ∈ R at which F is

continuous, limn→∞ F(n)(t) = F (t). Write T(n)
d→ T .

(As n goes to infinity, the distribution of T(n) converges to the distribution of T .)

Definition (Standardized sample mean)

For IID RVs X1, . . . ,Xn with E[X ] = µ and V [X ] = σ2 > 0, the standardized sample

mean is Z = X̄−E[X̄ ]√
V [X̄ ]

=
√
n(X̄−µ)

σ . It’s possible to show that E[Z ] = 0, v [Z ] = 1.
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Central limit theorem

Central limit theorem (CLT)

For IID RVs X1, . . . ,Xn with E[X ] = µ and V [X ] = σ2 > 0 and Z the standardized

sample mean, then Z
d→ N (0, 1) or, equivalently,

√
n(X̄ − µ)

d→ N (0, σ2).

For large enough n, the sampling distribution of the sample mean is approximately a
normal distribution.
[R demo]
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Confidence intervals
We’ve looked at how we can estimate features, θ, of the distribution of random variable
X . But how certain are we that these estimates reflect the true value of θ?
A confidence interval for θ is an estimated interval that covers the true value of θ with at
least some given probability.

Definition (Valid confidence interval)

A valid confidence interval for θ with coverage (1− α) is a random interval CI(1−α)(θ)
such that Pr(θ ∈ CI(1−α)(θ)) ≥ 1− α.

A 95% confidence interval for E[X ] should contain E[X ] with probability 0.95. [R demo]

Normal approx. based CI

Let θ̂ be an asymptotically normal estimator of θ, V̂ [θ̂] be a consistent estimator of the
sampling variance and α ∈ (0, 1). An asymptotically valid normal approx. based CI for θ

is CI(1−α)(θ) =

(
θ̂ − z1−α

2

√
V̂ [θ̂], θ̂ + z1−α

2

√
V̂ [θ̂]

)
, zc is the cth quantile of N (0, 1).
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Hypothesis testing

Hypothesis testing is closely related to confidence intervals.
Suppose we want to test the null hypothesis that θ = θ0.
We have an estimate θ̂ and want to ask: if θ were really equal to θ0, what is the
probability that we would have obtained an estimate θ̂ at least as far from θ0 as we did?

Definition (p-value)

Let θ̂ be an estimator of θ and let θ̂∗ be the observed value of θ̂. A (two tailed) p-value

under the null hypothesis θ = θ0 is p = Prθ0

[
|θ̂ − θ0| ≥ |θ̂∗ − θ0|

]
, where Prθ0 denotes

the probability under the null hypothesis θ = θ0.

A low p-value means, under the null, we would infrequently encounter an estimate as
large as we observed. We therefore might reject the null hypothesis on this basis.

16 / 37



Hypothesis testing

Definition (t-statistic)

Let θ̂ be an asymptotically normal estimator of θ, V̂ [θ̂] be a consistent estimator of the

sampling variance, and θ̂∗ be the observed value of θ̂. Then the t-statistic is t = θ̂∗−θ0√
V̂ [θ̂]

.

Normal approx. based p-values

An asymptotically valid (two-tailed) p-value under the null hypothesis that θ = θ0 is

p = 2

(
1− Φ

(
|θ̂∗−θ0|√

V̂ [θ̂]

))
= 2 (1− Φ (t)).

(Asymptotically valid CIs and p-values have no guarantees in finite samples.)
We often reject the null hypothesis when the p-value is smaller than some threshold (e.g.,
0.05). This leads to statements like “our result is statistically significant at the 0.05
level.” [R demo]
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Vectors
Linear algebra is a rich branch of mathematics that deals with vectors and matrices. We
provide a very limited review. See Matrix Algebra - Gentle (2007) [link] for more.

An n-dimensional vector is an array with n entries: x =

x1
...
xn

 with x1, . . . , xn ∈ R.

We will consider all vectors to be column vectors, not row vectors.
So the transpose of x is x⊤ =

(
x1 · · · xn

)
.

Scalar multiplication, vector addition, and vector subtraction are all elementwise.

Definition (Inner product)

An inner product between two n-dimensional vectors x , y is ⟨x , y⟩ =
∑n

i=1 xiyi .

We also write this as x⊤y =
(
x1 · · · xn

)y1
...
yn

 = x1y1 + · · ·+ xnyn.
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Vectors and sample statistics
The L2 (Euclidean) norm or length of a vector x is ∥x∥2 =

√∑
i x

2
i =

√
x⊤x .

We call the vector 1⊤ =
(
1 · · · 1

)
the one vector.

We can use 1 in an inner product to sum the elements of a vector x : 1⊤x =
∑

xi .
We can then calculate the mean value of x as x̄ = 1

n1
⊤x = 1

n

∑
xi .

We can create a vector containing n copies of the mean as x̄1, since x̄ is a scalar.
For a vector x , we can create its centered counterpart as xc = x − x̄1.
A centered vector has mean zero: 1⊤xc = 0.
We can also calculate variance using an inner product:

s2x = x⊤c xc
n−1 =

∥xc∥22
n−1 = 1

n−1

(√∑
i (xi − x̄)2

)2
= 1

n−1

∑
i (xi − x̄)2.

And so standard deviation is sx =
√

x⊤c xc
n−1 = ∥xc∥2√

n−1
.

Covariance between x and y is Cov(x , y) = x⊤c yc
n−1 , which is similar to variance.

Correlation between x and y is Cor(x , y) = x⊤c yc√
x⊤c xc

√
y⊤
c yc

= x⊤c yc
∥xc∥2∥yc∥2 , which takes the

familiar form of covariance over SDs.
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Matrices

An n ×m dimensional matrix, A, is an array with n rows and m columns where each
element ai ,j ∈ R. We write A ∈ Rn×m. Vectors are special cases of matrices in Rn×1.

A =


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m
...

...
. . .

...
an,1 an,2 · · · an,m


The transpose of A = (aij) is A

⊤ = (aji ). If A =

1 2 3
4 5 6
7 8 9

 then A⊤ =

1 4 7
2 5 8
3 6 9

.

For c ∈ R, cA = (c × aij).
(A⊤)⊤ = A
(cA)⊤ = cA⊤

(A+ B)⊤ = A⊤ + B⊤
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Matrix multiplication

We can multiply matrices. For matrices An×m,Bm×p, their product AB = Cn×p. Matrix
products are not commutative. So typically AB ̸= AB. Moreover, two matrices can only
be multiplied if their dimensions are compatible - they must have only dimension that is
the same size. For our An×m,Bm×p, BA is actually not computable.

An×mBm×p = Cn×p where cij =
∑

k aikbkj = a⊤i bj
where ai is the vector for the ith row of A and bj is the vector for the jth column of B

C = A B 
n×p

=

 
n×m

( )
m×p

(AB)⊤ = B⊤A⊤; A(BC ) = (AB)C ; A(B + C ) = AB + AC ; (B + C )A = BA+ CA
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Systems of linear equations

We often want to solve systems of linear equations like Ax = b for x , where An×m is a
matrix, x is a m × 1 vector and b is a n × 1 vector.

Does it make sense to do the following?

Ax = b ⇐⇒ A−1Ax = A−1b ⇐⇒ x = A−1b

(Note that we’re only looking at the linear algebra that is going to be useful for
understanding OLS. Again, see the references for more depth.)
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Matrix inverses

We can take the inverse of n × n matrices. AA−1 = A−1A = In. In is the identity matrix
that has all zeroes except for ones on the diagonal. InA = A

The matrix inverse is the solution to the equations AX = In and XA = In.

Matrix inverses only exist for matrices that are square (think about why; has to do with
conformability) and also have some other attributes. One of these is that the matrix
cannot be rank deficient, which essentially means that no column is a linear combination
of the other columns in the matrix (ai ̸= γ1a1 + · · ·+ γnan). This is why OLS does not
work under “perfect multicollinearity” - OLS involves taking a matrix inverse.

(A−1)−1 = A
(cA)−1 = c−1A−1

(A⊤)−1 = (A−1)⊤
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Vector calculus
Very informally, we can think about taking derivatives with vectors in a way that looks
similar to taking regular derivatives. For vector x , a and matrix A,1

Scalar Vector

f (x) →df

dx
f (x) →df

dx

ax →a x⊤A →A

ax →a x⊤a →a

x2 →2x x⊤x →2x

ax2 →2ax x⊤Ax →2Ax

(a− bx)2 →− 2b(a− bx) (a− Ax)⊤(a− Ax) →− 2A⊤(a− Ax)
1This slide pulls from Kristy McNaught’s ”Matrix derivatives cheat sheet” [link] and Petersen and

Pedersen’s ”The Matrix Cookbook” [link] 25 / 37

http://www.gatsby.ucl.ac.uk/teaching/courses/sntn/sntn-2017/resources/Matrix_derivatives_cribsheet.pdf
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What is regression for?

Suppose we have data on two variables X and Y that are drawn from a joint distribution.

There are different things we might want to do with this data:

1. use X to predict values for Y for units that we do not have data on

2. understand how Y changes as X changes statistically

3. understand the causal effect that X has on Y

It is important to recognize that these are different goals and require different things.

Recall that “Correlation (i.e., statistical association) does not imply causation.”

We’ll discuss 1 and 2 briefly here. See Elements of Statistical Learning - Hastie et al
(2009) [link] for a thorough introduction. The rest of the course will focus on 3. See
Causal Inference: the Mixtape - Cunningham (2021) [link] for a useful reference.
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CEF and BLP Review

For every value of x , E[Y |X = x ] maps x to the conditional mean of Y (a single value).
So we can consider this a type of function that takes in values of x and outputs the
conditional expectation of Y when X = x . We call this the conditional expectation
function (CEF). We usually write E[Y |X ] to denote the CEF. The CEF is a feature of the
joint distribution of X ,Y .

The CEF, E[Y |X ], is the best (minimum MSE) predictor of Y given X .

Restricting to linear functions of X , the best (minimum MSE) linear predictor of Y given
X is g(X ) = α+ βX , where

α = E[Y ]− βE[X ] and β =
Cov[X ,Y ]

V [X ]

We call this the best linear predictor (BLP).
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Regression, BLP, and CEF

To predict Y using X or to understand how Y changes with X statistically, we might
hope know the CEF. But the CEF is typically unknown; so we must estimate it using data.

How might we do this?
One option would be to try to directly estimate the CEF using some flexible ML method.
This can be a good option for prediction. But it doesn’t always provide a simple summary
of how Y changes with X (though some approaches do; e.g., KRLS [link]).

Another approach is to try to estimate the BLP as a linear approximation of the CEF and
then inspect the coefficients in the estimated equation ĝ(X ) = α̂+ β̂X . This estimation
can be done using ordinary least squares (OLS) regression.

OLS regression estimates of the BLP can provide simple, transparent, and useful
summaries of and approximations to the CEF.
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https://www.cambridge.org/core/journals/political-analysis/article/kernel-regularized-least-squares-reducing-misspecification-bias-with-a-flexible-and-interpretable-machine-learning-approach/D82787CB4B93CB23170634E32E8C3201


Example
Data generating process: x = runif(1000, 0, 2); y = x4 + rnorm(1000, 0, 1)
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Estimating the BLP - bivariate case

The BLP of Y given X is g(X ) = α+ βX , where

β = Cov[X ,Y ]
V [X ] = E[XY ]−E[X ]E[Y ]

E[X 2]−E[X ]2

α = E[Y ]− βE[X ]

We can estimate α, β from a sample of data as β̂ = XY−X×Y

X 2−X
2 and α̂ = Y − β̂X .

We are not assuming anything about the distribution of X ,Y . This is always a valid
procedure for estimating the BLP (in that these estimates are consistent for the BLP).
Though the BLP can be a better or worse approximation to the CEF depending on the
distribution of X ,Y and the linearity of their relationship.
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Estimating the BLP - multivariate case

Let (Y1,X1), (Y2,X2), . . . , (Yn,Xn) be n IID random vectors, where
Xi = (Xi ,1,Xi ,2, . . . ,Xi ,p) is a random vector of p “explanatory” variables for each unit i .

The BLP of Y given X is g(X) = Xβ,

where β⊤ = (β0, β1, β2, . . . , βp) ∈ Rp+1, and Xn×(p+1) is a matrix with n rows for the n
observations or units and p columns for the p explanatory variables as well as a column of
1’s for the intercept.

Xn×(p+1) =


1 X1,1 X1,2 · · · X1,p

1 X2,1 X2,2 · · · X2,p
...

...
...

. . .
...

1 Xn,1 Xn,2 · · · Xn,p


β can be estimated using OLS regression.
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Ordinary least squares
OLS regression minimizes the sum of squared differences ei = Yi − X⊤

i b across all units i
using the same set of coefficients b to estimate β:

β̂ = argminb∈Rp+1

n∑
i

e2i

= argminb∈Rp+1∥e∥22
= argminb∈Rp+1∥Y − Xb∥22
= argminb∈Rp+1(Y − Xb)⊤(Y − Xb)

This can be solved by setting the derivative wrt b of (Y − Xb)⊤(Y − Xb) equal to zero.

β̂ = (X⊤X)−1X⊤Y; Ŷ = ĝ(X) = Xβ̂

In the PSET you will derive this and show a few properties.
The suggested resources and these slides should get you started.
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Bivariate and multivariate connection

Recall that the sample covariance between two vectors x , y can be written as
ˆCov[x , y ] = x⊤c yc

n−1 and that the sample variance of a vector can be written as V̂ [x ] = x⊤c xc
n−1 .

We can see a connection between the bivariate and multivariate estimates of the BLP:

bivariate: β̂ =
ˆCov[X ,Y ]

V̂ [X ]
=

x⊤c yc
n−1

x⊤c xc
n−1

= x⊤c yc
x⊤c xc

= (x⊤c xc)
−1x⊤c yc

multivariate: β̂ = (X⊤X)−1X⊤Y

It turns out that the centering doesn’t change the estimate of β̂ so, as we might expect,
these can be written in a similar form.
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