
Sensitivity Analysis for Sample Selection as a Threat to Internal Validity
[DRAFT]

Adam Rohde∗, Chad Hazlett†

December 2022

Abstract
Sample selection is a common threat to the internal validity of causal effect estimates. While Rohde and Hazlett (20XX)

discusses these threats at length and provides guidance on how covariate adjustment can be use to address them, what
should researchers do when observed covariates are insufficient to eliminate these threats? We discuss the omitted variable
based sensitivity analyses of Cinelli and Hazlett (2020) and Chernozhukov et al. (2022) and how these can be leveraged
to evaluate threats from sample selection. Since sample selection as a threat to internal validity is typically the result
of collider stratification, the parameters in such sensitivity analyses can be difficult to interpret. We show how more
interpretable expressions for the sensitivity parameters in these frameworks can be derived in some simple, parametric
settings. Using these as a guide, we also propose bounds on the parameters for the general, non-parametric settings by
drawing on information theory. A worked example and discussion are provided.

1 Introduction
Sample selection bias is a common threat to the internal validity of causal effect estimates. Rohde and Hazlett (20XX) discuss
this problem in depth and provide a comprehensive framework for evaluating these threats and whether covariate adjustment
can be used to eliminate them. But what should be done when covariate adjustment using observed data is insufficient
to remove the threats to internal validity from sample selection and to identify causal effects? We show how researchers
can use sensitivity analysis. Rohde and Hazlett (20XX) show that sample selection as a threat to the internal validity of
causal effect estimates can often be viewed as an omitted variable problem. Therefore, we can conduct omitted variable bias
based sensitivity analyses when considering threats to internal validity from sample selection, when observed covariates are
insufficient to identify internally valid causal effects.

Suppose an investigator is interested in estimating the effect of a treatment, D, on an outcome, Y , for the selected sample
alone or for the subpopulation for which the selected sample is a representative sample.1 Suppose further that the investigator
knows or is willing to assume that Yd ̸⊥⊥ D|X,S = 1 but Yd ⊥⊥ D|W,X,S = 1 based on the tools discussed in Rohde and
Hazlett (20XX). Yd ⊥⊥ D|W,X,S = 1 is a conditional ignorability statement that can be used to identify internally valid
casual effects. Yd[i] is a potential outcome; that is, value the variable Y would have taken for unit i, if the variable D for unit
i had been set, possibly counterfactually, to the value d. If W is not observed, we can consider it as an omitted variable and
use an omitted variable based sensitivity analysis to understand the threats to internal validity posed by sample selection. In
this case, W would be a variable that blocks non-causal paths or spurious associations created by sample selection.2 Figure 1
presents simple examples. The graphs in Figure 1 are internal selection graphs, which explicitly show how sample selection
alters the relationships between variables in the selected sample. See Rohde and Hazlett (20XX) for how such graphs can be
constructed from directed acyclic graphs (DAGs) and for further discussion of all the concepts just discussed.

In this paper we discuss the omitted variable based sensitivity analyses of Cinelli and Hazlett (2020) and Chernozhukov
et al. (2022) and how these can be leveraged to evaluate the threats that sample selection poses for internal validity. We
discuss how the sensitivity parameters in such frameworks, in the sample selection setting, can be difficult to interpret. We
show how alternative expressions for these sensitivity parameters can be derived in terms of more easily interpreted quantities
in some simple, parametric settings. Using these parametric settings as inspiration, we then propose bounds on the difficult
to interpret sensitivity parameters for general, non-parametric settings again in terms of more easily interpreted quantities.
Finally, we provide a worked example and brief discussion.

∗Department of Statistics, UCLA. adamrohde@ucla.edu
†Associate Professor, Departments of Statistics & Political Science, UCLA. chazlett@ucla.edu
1See Rohde and Hazlett (20XX) for further discussion of internal validity, causal effects for the selected sample, and causal effects for the

subpopulation for which the selected sample is representative.
2W could also be a simple common cause confounder of the Y,D relationship. This would put you in the settings already discussed in Cinelli

and Hazlett (2020) and Chernozhukov et al. (2022).
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Figure 1: Internal selection graph examples
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2 Omitted variable based sensitivity analyses
We review three settings in which an investigator may consider the threats to internal validity from sample selection as a
omitted variable bias problem. Each of these settings allow us to use expressions for or bounds on such bias as the basis for a
sensitivity analysis. These settings are those considered in Cinelli and Hazlett (2020) and Chernozhukov et al. (2022).

Linear Model We may be interested in estimating a linear regression model, using the selected sample, like in Equation
1a. However, we know that Yd ̸⊥⊥ D|X,S = 1 and Yd ⊥⊥ D|W,X,S = 1; so βY∼D|X,S=1 contains some bias, relative to what
we would estimate if we were to include W in the regression, like in Equation 1b. We will refer to βY∼D|X,S=1 as θs and
βY∼D|W,X,S=1 as θl, for the parameter of interest for the “short” and “long” regressions, respectively.

[
Y = βY∼D|X,S=1D +XβY∼X|D,S=1 + ϵs

]
|S = 1 (1a)[

Y = βY∼D|W,X,S=1D +XβY∼X|D,W,S=1 + βY∼W |D,X,S=1W + ϵl
]
|S = 1 (1b)

Partially Linear Model Alternatively, we may be interested in estimating a partially linear model, as in Equation 2b.
But, as in the fully linear case, they are only able to estimate Equation 2a, which omits W . In both the linear and partially
linear cases, we assume that the user is responsibly considering how a linear or partially linear model (and the inclusion of a
covariate in these models) differs from a fully non-parametric setting, before considering that they want to know how inclusion
of W in the model changes θs.

[Y = θsD + fs(X) + ϵs] |S = 1 (2a)
[Y = θlD + fl(X,W ) + ϵl] |S = 1 (2b)

Non-parametric Model We may also suppose that the investigator is interested in estimating a linear functional of the
conditional expectation function of the outcome in a fully non-parametric setting, like Equation 3b for a binary treatment D,
where Yd = fY (d,X,W,UY ) is the equation for Y in the structural causal model3 under intervention to set D = d. Again, the
investigator is only able to estimate Equation 3a, where f∗

Y (D,X)
∆
= E[Y |D,X] = E[fY (D,X,W )|D,X].

θs = E[f∗
Y (1, X)− f∗

Y (0, X)|S = 1] (3a)
θl = E[Y1 − Y0|S = 1] = E[fY (1, X,W )− fY (0, X,W )|S = 1] (3b)

In all three settings, there will be some bias resulting from not adjusting for W in our estimate. The bias is θs − θl. The
cause of the bias may be sample selection or common cause confounding or both. Again, see Rohde and Hazlett (20XX) for
more on how sample selection can be thought of as an omitted variable problem. We can leverage an omitted variable bias
frameworks to conduct sensitivity analysis to see how θs would change if we had included W in our estimation.

2.1 Expressions for omitted variable bias
For each of the settings above, Cinelli and Hazlett (2020) and Chernozhukov et al. (2022) provide expressions for or bounds
on the omitted variable bias that can be expressed in terms of simple sensitivity parameters that capture the relationships
between the variables in the selected sample.

3See Rohde and Hazlett (20XX) for more discussion of structural causal models under sample selection.
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Linear Model Following Cinelli and Hazlett (2020), we can show that omitted variable bias for internally valid OLS
regression can be expressed as in Equation 4.

|b̂ias| = ŝe(β̂Y∼D|X,S=1)

√√√√dfS=1

R2
Y∼W |D,X,S=1R

2
W∼D|X,S=1

1−R2
W∼D|X,S=1

(4)

ŝe(β̂Y∼D|X,S=1) =
ŜD(Y ⊥D,X |S=1)√

dfS=1ŜD(D⊥X |S=1)
is equal to the standard error running a regression using the selected sample using

typical statistical software and dfS=1 are that regression’s degrees of freedom. See Appendix A Section A.1 for the full
derivation. R2

Y∼W |D,X,S=1 is a partial R2 that equals the fraction of residual variation in Y explained by W after partialling
out both D and X, in the selected sample. R2

W∼D|X,S=1 is a partial R2 that equals the fraction of the residual variation in D

explained by W after partialling out X, in the selected sample. See Cinelli and Hazlett (2020) for further discussion of how to
interpret partial R2s.

Partially Linear Model Chernozhukov et al. (2022) show that omitted variable bias in partially linear setting can be
bounded by an expression in terms of η2Y∼W |D,X,S=1, η

2
D∼W |X,S=1, and terms estimable from the data. η2Y∼W |D,X,S=1 and

η2D∼W |X,S=1 are Pearson’s correlation ratios (or non-parametric R2s).4 η2Y∼W |D,X,S=1 is the proportion of residual variation
in Y explained by W . η2D∼W |X,S=1 is the proportion of residual variation in D explained by W . See Chernozhukov et al.
(2022) for further discussion of how to interpret partial η2s.

Non-parametric Model Chernozhukov et al. (2022) also show that omitted variable bias in fully non-parametric setting can
be bounded by an expression in terms of η2Y∼W |D,X,S=1 and a second term that, in the case of targeting θl = E[Y1− Y0|S = 1]
with a binary treatment D, is the “average gain in the conditional precision with which we predict D by using W in addition
to X,” which is somewhat similar to η2D∼W |X,S=1.

The sensitivity parameters above are either R2s or η2s, quantities with which most researchers will have some familiarity.
While these may be familiar measures of dependence, they do not have all properties of dependence measures that are desirable.
For example, an R2 of zero can exist for dependent variables and an R2 reflects only the linear relationship between variables.
But they do have several useful properties and certain appeal as measures of dependence. See Rényi (1959) for a discussion of
these measures of dependence and the properties that make good measures of dependence. Cinelli and Hazlett (2020) and
Chernozhukov et al. (2022) provide thorough discussions of sensitivity analysis using these bias expressions and reasoning
about these types of sensitivity parameters, in addition to tools and examples for conducting such analysis. However, this
discussion hinges on the ability for practitioners to interpret the sensitivity parameters on which this sort of sensitivity
analysis relies. That is, ignoring any limitations as measures of dependence, researchers intending to conduct a sensitivity
analysis using these approaches must be able to build an understanding of the relationships between the variables based on
first principles, existing literature, intuition, and subject matter expertise. Such understanding will, necessarily, reflect causal
relations between the variables.5 As we discuss next, obtaining such knowledge is complicated by sample selection.

2.2 Difficulty interpreting sensitivity parameters in selected samples
Since the bias we are worried about might be a result of sample selection and the effect we are interested in is for the
selected sample alone, we allow for either of the sensitivity parameters R2

Y∼W |D,X,S=1 or R2
W∼D|X,S=1 (or η2Y∼W |D,X,S=1 or

η2D∼W |X,S=1) to contain a purely statistical relationship that results from stratifying to S = 1 where S is a collider, rather
than just causal relationships that operate in the full population. Sensitivity analysis should leverage external knowledge
about the relationships captured by these sensitivity parameters to inform the range of plausible values that the sensitivity
parameters may take. This can then be used to determine how θs may change if W were included in the estimation. However,
such external knowledge will be difficult to obtain when one of these sensitivity parameters contains a purely statistical
(i.e., non-causal) relationship created by conditioning on a collider due to sample selection.6 This is because the association
captured by the sensitivity parameter does not result from structural relationships in which one variable causes another.

4η2
D∼W |X,S=1

=
Var(E[D|W,X,S=1]|S=1)−Var(E[D|X,S=1]|S=1)

Var(D|S=1)−Var(E[D|X,S=1]|S=1)
=

η2
D∼WX|S=1−η2

D∼X|S=1

1−η2
D∼X|S=1

. η2
Y ∼W |D,X,S=1

can be similarly interpreted.
5It is important to recognize that the R2s or η2s in the expressions for or bounds on omitted variable bias from Cinelli and Hazlett (2020) and

Chernozhukov et al. (2022) are statistical measures of dependence between the variables. These could measure direct causal realtionships between
variables. Often, however, the variables might not have a direct causal relationship. In such cases, the R2s or η2s may be capturing a chain of causal
relationships. Researchers should be clear about such causal relationships when building their understanding of the relationship between W and Y .
There could be more information available about the constituent relationships or maybe the true relationship becomes murkier.

6By “purely statistical relationship,” we mean one that arises due to conditioning, as opposed to a relationship that exists causally in the
population from which the sample was selected.
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Instead, the association results from or is changed by the often counterintuitive phenomenon of conditioning on a common
effect (a collider). Such associations do not exist in the population from which the sample was selected and will be difficult
to understand from first principles, previous studies (unless those studies suffered from similar sample selection), intuition,
or subject matter expertise concerning mechanisms. See the worked example below for an example. In what follows, we
consider how we might deal with this problem by appealing to relationships between the variables in the full population,
as opposed to the selected sample.7 In our discussion, we focus on R2

W∼D|X,S=1 and η2D∼W |X,S=1. Similar discussion could
apply to R2

Y∼W |D,X,S=1 or η2Y∼W |D,X,S=1. We do not fully address the non-parametric case, since not all of the sensitivity
parameters can be expressed as R2s or η2s, but if the sample selection collider alters the association between Y and W , then
our discussion will still apply. We start by building a sense for how these sensitivity parameters can be expressed in terms of
structural relationships between the variables in the full population in simple parametric settings.

Binary random variables To provide some intuition about how we will try to understand R2
D∼W |X,S=1 and η2D∼W |X,S=1,

we consider the case where W,D are binary. We assume that data are generated according to a simple collider graph:
D → S ←W . Here X = {∅}. R2

D∼W |S=1 can be written in terms of six probabilities as shown in Equation 5.8 See Appendix
A Section A.2 for the complete derivation.

R2
D∼W |S=1 = [PS=1|11PS=1|00 − PS=1|10PS=1|01]

2 PW=1PD=1PW=0PD=0(
[PS=1|11PD=1 + PS=1|10PD=0][PS=1|01PD=1 + PS=1|00PD=0]×
[PS=1|11PW=1 + PS=1|01PW=0][PS=1|10PW=1 + PS=1|00PW=0]

) (5)

The relationship between W and D in the selected sample (S = 1) can be expressed in terms of the relationships between S
and W,D, in the full population, where we also need P (D = 1), P (W = 1). These quantities capture structural (i.e., causal)
relationships between the variables. The key here is that R2

D∼W |X,S=1 can be understood in terms of structural relationships
in the full population.

Truncated multivariate normal random variables Let’s consider another parametric setting to provide additional
intuition into how we might try to think about R2

D∼W |X,S=1 and η2D∼W |X,S=1. Take the case where W,D,S have the causal
structure shown in Figure 2 and W,D,S0 have a multivariate normal joint distribution and S = 1[S0 ≥ C] for some C ∈ R.
Again X = {∅}. S0 can be thought of as a hypothesized latent variable that captures how W and D relate to S. The
bidirected edge captures that W,D could have some relationship other than that created by conditioning on S. Within the
stratum S = 1, we have a truncated multivariate normal joint distribution. Using the properties of truncated normals, we get
the expression for R2

W∼D|S=1 in Equation 6.9 See Appendix A Section A.3 for the complete derivation.10

Figure 2: Internal selection graph for truncated multivariate normal example

D W

S0

S

R2
D∼W |S=1 =

(
ρD∼W − ρS∼DρS∼W θ√
1− ρ2S∼Dθ

√
1− ρ2S∼W θ

)2

, where θ can be written as a function of P (S = 1) or C (6)

The relationship between W and D in the selected (truncated) sample can be expressed in terms of the relationships
between S,W and S,D as well as between W and D, in the full population, where we also need P (S = 1), the probability of
selection. Again, these quantities capture structural (i.e., causal) relationships between the variables in the population.

7If one or both of the sensitivity parameters does not contain a relationship altered by collider stratification, then the parameters for the selected
sample will be the same as those for the population. The exception is when sample selection blocks a causal path that operates in the population
but not in the selected sample. See Rohde and Hazlett (20XX) for more discussion.

8PW=w = P (W = w), PD=d = P (D = d), PS=1 = P (S = 1), PS=1|wd = P (S = 1|W = w,D = d), PW=0 = 1− PW=1 and PD=0 = 1− PD=1.
9In Equation 6, if ρW∼D = 0, then R2

D∼W |S=1
=

R2
S∼DR2

SW θ2√
1−R2

S∼D
θ
√

1−R2
S∼W

θ
.

10Heckman (1979) relies on truncated normal variables and having some data on the full population; connections to that work are not explored
here.
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Partial correlation and “constant selection effects” It is important to note that truncation on S or stratification to
S = 1 (i.e., sample selection) is not the same as conditioning on S. Conditioning on S (linearly) would give Equation 7, based
on the partial correlation formula.11 This does not equal R2

W∼D|S=1 in general. Equations 6 and 7 are remarkably similar,
however, with their only differences being the need to account for where truncation happens (or the probability of selection).
Equation 7 holds for linear conditioning on S, without any restrictions on the distribution or relationships between W , D,
and S. Equation 6 only holds for truncated normals.

R2
D∼W |S =

(
ρD∼W − ρS∼DρS∼W√
1− ρ2S∼D

√
1− ρ2S∼W

)2

(7)

We might wonder under what circumstances we would be able to use Equation 7 to inform our discussion of R2
W∼D|S=1.

We explore this in Appendix A Section A.4. The idea is to assume something like “constant selection effects” (akin to constant
treatment effects) between the S = 1 and S = 0 strata. Such an approach also requires some assumptions about the strata
specific variances for W and D. While this could be used as a first pass analysis, the assumptions are typically unrealistic and
using this approach could underestimate R2

W∼D|S=1. In Appendix A Section A.5, we discuss a simple bound on R2
W∼D|S=1

that relies on the partial correlation formula. However, this bound is typically uninformative (not less than 1) and so we do
not discuss it here.

In the next section, we propose bounds on R2
D∼W |S=1 and η2D∼W |S=1 (as well as R2

W∼D|X,S=1 and η2D∼W |X,S=1) for the
non-parametric case in which we make no restrictions on the distribution or relationships between W , D, and S. In spirit,
these bounds are similar to Equations 5 and 6 in that they ask us to reason about the relationships between W , D, and S
(i.e., the sample selection mechanism) in the population, as well as the probability of selection. These population relationships
are structural causal relationships. As such, researchers should be able to appeal to a combination of first principles, previous
studies and existing literature, intuition, and subject matter expertise to understand the range of plausible strengths of these
relationships.

3 Proposal
Since one of the sensitivity parameters in the omitted variable bias expression might contain some spurious association
created by sample selection (and is therefore difficult to interpret), we aim to bound this sensitivity parameter with structural
relationships from the full population, about which investigators should be able to reason more easily. We will bound
R2

D∼W |S=1, η
2
D∼W |S=1, R

2
D∼W |X,S=1, and η2D∼W |X,S=1 by appealing to mutual information.

What is mutual information? Before we try to work with mutual information, what is it? Mutual information is a
measure of how similar the joint distribution of two random variables, A and B, is to the product of their marginal distributions.
Therefore, it is a measurement of the total dependence between A and B, whether this dependence is linear or non-linear.
It makes no assumptions about the distribution of A and B or the form their dependence takes. As we will discuss further
below, it turns out that mutual information has a number of useful properties for measuring dependence that are not present
in R2s and η2s. Mutual information between A and B, MI(A;B), can be thought of as the information obtained (or reduction
in uncertainty) about variable A that results from learning the value of variable B. (Smith, 2015) Mutual information is
defined in the following ways, where DKL is KL divergence and H is entropy.

MI(A;B) = DKL
(
P(A,B)∥PA ⊗ PB

)
=
∑
a

∑
b

P(A,B)(a, b) log

(
P(A,B)(a, b)

PA(a)PB(b)

)
= H(A) +H(B)−H(A,B)

There are also useful notions of conditional mutual information and joint mutual information and entropy. See Ihara (1993);
MacKay (2003); Cover and Thomas (2006) for details.12 Mutual information measures the amount of Shannon information
revealed about A as a result of knowing B. Shannon information (or surprisal) of an event is defined as IA(a) = log (1/PA(a)).
Events that occur with certainty are perfectly unsurprising and hence have no information. As the probability of an event
decreases, the surprise that the event occurred increases, and so does the information content. The entropy of a random

11In Equation 7, if ρW∼D = 0, then R2
D∼W |S =

R2
S∼DR2

S∼W√
1−R2

S∼D

√
1−R2

S∼W

. Without restrictions on the distribution or relationships between W , D,

and S, recall that ρWD = 0 does not mean that W and D are marginally independent.
12We’ve shown the definition of mutual information for discrete random variables but there are analogous definitions for arbitrary random

variables.
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variable is the average information of the outcomes of the variable, H(A) =
∑

a PA(a) log(1/PA(a)), and can be thought of as
the uncertainty in the variable’s outcomes. (MacKay, 2003) While mutual information can be an improvement as a measure of
dependence over R2 or η2, in practice, interpreting mutual information can be difficult. Therefore, we appeal to a normalized
version that has nice properties discussed below.

Mutual information for Gaussians In order to connect R2
D∼W |S=1, η

2
D∼W |S=1, R

2
D∼W |X,S=1, and η2D∼W |X,S=1 with

mutual information, we draw inspiration from the relationship between R2 and mutual information for random variables
with Gaussian distributions. For random variables, W and D, with a bivariate Gaussian joint distribution, there is an exact
relationship between R2 (i.e., squared correlation coefficient) and mutual information (MI). (Ihara, 1993; Cover and Thomas,
2006)

MI(W ;D) = −1

2
log(1−R2

D∼W ) ⇐⇒ R2
D∼W = 1− exp(−2×MI(W ;D))

This relationship do not hold for arbitrary random variables, but many authors have considered this type of transformation
of mutual information as a way to obtain something like a non-parametric “correlation” based on mutual information. See
Linfoot (1957); Kent (1983); Joe (1989); Kojadinovic (2005); Lu (2011); Speed (2011); Kinney and Atwal (2014); Asoodeh
et al. (2015); Smith (2015); Shevlyakov and Vasilevskiy (2017); Laarne et al. (2021), among others. Lu (2011) presents such a
measure of dependence that is defined for arbitrary variables and that has many nice properties. We employ a slight variation
on Lu (2011)’s L-measure, to create a useful normalized version of mutual information for our purposes. The L-measure takes
the form L(MI) = 1− exp(−2× IF×MI), where IF is an “inflation factor” that ensures that the L-measure takes appropriate
values for arbitrary variables, not just continuous variables. See Appendix A Section A.6 for details.

Bounds This normalization of mutual information and Theorem 1 allow us to build interpretable bounds on R2
D∼W |S=1,

η2D∼W |S=1, R2
D∼W |X,S=1, and η2D∼W |X,S=1 without any assumptions on the distrubutions or relationships between the

variables. Theorem 1 can be applied to the case for which S is a collider between D and W (e.g., D → S ←W ), providing a
guide to how conditioning on a collider alters the relationship between the parents of the collider. We leverage our normalized
version of mutual information, which we call normalized scaled mutual information (NSMI), to give interpretable bounds on
R2

D∼W |S=1, η
2
D∼W |S=1, R

2
D∼W |X,S=1, and η2D∼W |X,S=1 that rely on Theorem 1. These bounds can be found in Theorems 2

and 3. These results are proved and NSMI is defined in detail in Appendix A Section A.6. While framed in the context of
conditioning on a collider, S, these results hold for stratification to S = 1 in general.

Theorem 1. For random variables D,W,S, conditioning on S alters the relationship between D and W according to the
expression MI(D;W |S) = MI(D;W ) + MI(S; [D,W ])−MI(S;D)−MI(S;W ). Therefore, the change in dependence due to
conditioning on S can be characterized using mutual information according to MI(D;W |S)−MI(D;W ) = MI(S; [D,W ])−
MI(S;D)−MI(S;W ). The dependence is not changed when MI(S; [D,W ]) = MI(S;D) + MI(S;W ). When S is binary, it is
also possible to write MI(D;W |S) = p(S = 1)MI(D;W |S = 1) + p(S = 0)MI(D;W |S = 0), meaning that MI(D;W |S = 1) ≤
MI(D;W |S)

p(S=1) = MI(D;W )+MI(S;[D,W ])−MI(D;S)−MI(W ;S)
p(S=1) .

Theorem 2. For random variables D,W,S, for which S is a collider on a path from D to W in G+
S that, if conditioned on,

could alter the relationship between D and W (e.g., D → S ←W ), the R2
D∼W |S=1 and η2D∼W |S=1 resulting after stratification

to S = 1 can be bounded in the following ways:

1. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(S;[D,W ])]

[1−NSMI(S;D)][1−NSMI(S;W )]

) 1
p(S=1)

2. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(D;S|W )]

[1−NSMI(S;D)]

) 1
p(S=1)

3. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(W ;S|D)]

[1−NSMI(S;W )]

) 1
p(S=1)

4. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1−NSMI(D;W )][1−NSMI(D;S|W )])

1
p(S=1)

5. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1−NSMI(D;W )][1−NSMI(W ;S|D)])

1
p(S=1)

6. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1−NSMI(D;W )][1−NSMI(S; [D,W ])])

1
p(S=1)

Theorem 3. For random variables D,W,S,X, for which S is a collider on a path from D to W in G+
S that, if conditioned

on, could alter the relationship between D and W (e.g., D → S ← W ), the R2
D∼W |X,S=1 and η2D∼W |X,S=1 resulting after

stratification to S = 1 can be bounded in the following ways:

1. R2
D∼W |X,S=1 ≤

1
1−R2

D∼X|S=1

×
(
1−

[
[1−NSMI(D;[W,X])][1−NSMI(S;[D,W,X])]

[1−NSMI(D;S)][1−NSMI([W,X];S)]

] 1
p(S=1) −R2

D∼X|S=1

)

6
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2. R2
D∼W |X,S=1 ≤

1
1−R2

D∼X|S=1

×
(
1− [1−NSMI(D;X|S = 1)]

[
[1−NSMI(D;W |X)][1−NSMI(S;[D,W ]|X)]

[1−NSMI(D;S|X)][1−NSMI(W ;S|X)]

] 1
p(S=1) −R2

D∼X|S=1

)
3. η2D∼W |X,S=1 ≤

1
1−η2

D∼X|S=1

×
(
1−

[
[1−NSMI(D;[W,X])][1−NSMI(S;[D,W,X])]

[1−NSMI(D;S)][1−NSMI([W,X];S)]

] 1
p(S=1) − η2D∼X|S=1

)
4. η2D∼W |X,S=1 ≤

1
1−η2

D∼X|S=1

×
(
1− [1−NSMI(D;X|S = 1)]

[
[1−NSMI(D;W |X)][1−NSMI(S;[D,W ]|X)]

[1−NSMI(D;S|X)][1−NSMI(W ;S|X)]

] 1
p(S=1) − η2D∼X|S=1

)
where R2

D∼X|S=1 or η2D∼X|S=1 is estimated from the data. We can approximate or inform the choice of NSMI(D;X|S = 1)

using the estimated R2
D∼X|S=1 or η2D∼X|S=1.

13 These bounds are all analogous to bound 1 in Theorem 2. Analogs to bounds 2
- 6 in Theorem 2 could also be formed.

Normalized scaled mutual information (NSMI) NSMI is a mutual information based measure of dependence between
random variables. It measures the full dependence relationship of two random variables, not just the linear dependence or
dependence related through the conditional expectation function. We show in Appendix A Section A.6 that, for two random
variables (X,Y ), NSMI(X;Y ) can be thought of as a measure of the proportion of the certainty in the outcomes of X, after
we learn the value of Y , that is gained as a result of learning the value of Y . (As opposed to the proportion of the certainty
in the outcomes of X, after we learn the value of Y , that existed before we learned the value of Y .) Of course, this connects
to the typical interpretation of mutual information as the “amount of information” obtained about X as a result of learning
the value of Y . NSMI can indeed be interpreted just as a normalized and scaled version of mutual information; but it also
has this additional interpretation that is somewhat similar to thinking of R2 as the proportion of variance in one variable
explained by another variable.

NSMI and the L-measure it is based on are useful measures of dependence between random variables in that they satisfy
the properties discussed in Rényi (1959), Smith (2015), Lu (2011), and others as the properties possessed by “an appropriate
measure of dependence.”1415

1. NSMI is defined for arbitrary pairs of random variables.16
2. NSMI is symmetric.
3. NSMI takes values between 0 and 1.
4. NSMI equals 0 if and only if the variables are independent.
5. NSMI equals 1 if and only if the variables have a strict dependence (functional relationship).
6. NSMI is invariant to marginal, one-to-one transformations of the variables.
7. If the variables are Gaussian distributed, then NSMI equals their R2.17
(Laarne et al., 2021) also discusses a very similar transformation of mutual information and notes: “MI is invariant

under monotonic transformations of variables. This means that the MI correlation coefficient of a non-linear model (X,Y )
matches the Pearson correlation of the linearized model (f(X), g(Y )). General conditions for f and g are described in” Ihara
(1993). (Laarne et al., 2021) The “MI correlation coefficient” discussed in Laarne et al. (2021) is defined similarly to NSMI for
continuous variables. Thus, NSMI can be thought of as the R2 of the linearized model (f(X), g(Y )).18

We also provide examples to help readers gain some familiarity with NSMI. In Figures 3 and 4, we show 12 different types
of bivariate relationships with the corresponding R2, η2, and NSMI. In these examples, we estimate NSMI using the rmi
and infotheo R packages and η2 with the KRLS R package using samples of 1000 data points. (Michaud, 2018; Meyer, 2014;

13We cannot directly estimate NSMI(D;X|S = 1), since we cannot estimate Ω or IF which are based on η2
D∼W,X|S=1

and MI(D; [W,X]|S = 1).
See Appendix for discussion of Ω and IF.

14Mutual information satisfies properties 1, 2, 4, and 6. Squared Pearson correlation (i.e., R2) satisfies properties 1, 2, 3, 5, and 7. η2 also does
not satisfy all of these properties. See Rényi (1959) for further discussion.

15The transformation ℓ2(MI(X;Y )) = 1− exp (−2× MI(X;Y )) ensures that properties 2, 3, 6, and 7 are satisfied; it is the transformation that
turns mutual information into an R2 for Gaussian distributed variables. The transformation L2(MI(X;Y )) = 1 − exp (−2× IF × MI(X;Y )) is
the square of Lu (2011)’s L-measure, where IF is chosen to ensure that properties 1 and 5 are satisfied, while also maintaining properties 2, 3, 6,

and 7. The transformation NSMI(X;Y )
∆
= L2

Ω(MI(X;Y )) = 1− exp (−2×Ω× IF × MI(X;Y )) is our normalized and scaled measure of mutual
information, where Ω ≥ 0 is also chosen to ensure that property 8 is satisfied, while also maintaining properties 1 through 7. Lu (2011) demonstrates
that properties 1 through 7 hold for the L-measure. Given this, it is trivial to see that they also hold for NSMI.

16When there are multiple unobserved variables contained in W , we can consider them in combination and consider their NSMI. That is, let
W = {W1,W2, . . . ,Wk} and consider NSMI like NSMI(S; [D,W ]) = NSMI(S; [D,W1,W2, . . . ,Wk]) or NSMI(D;W ) = NSMI(D; [W1,W2, . . . ,Wk]).

17Based on how we’ve defined NSMI, we also have the property that NSMI(D;E[D|W,S = 1]|S = 1) = R2
D,E[D|W,S=1]|S=1

= η2
D∼W |S=1

.
18It is worth noting that, although we might be more comfortable thinking about correlations and R2’s, they are not necessarily capturing what

we expect. First, correlation and R2 capture only the strength of linear association; these do not necessarily capture an intuitive sense of dependence
but one restricted to linear relationships. Also, “Mutual Information is a nonlinear function of ρ which in fact makes it additive. Intuitively, in the
Gaussian case, ρ should never be interpreted linearly: a ρ of 1

2
carries ≈ 4.5 times the information of a ρ = 1

4
, and a ρ of 3

4
12.8 times!” (Taleb,

2019) “One needs to translate ρ into information. See how ρ = 0.5 is much closer to [ρ =]0 than to a ρ = 1. There are considerable differences
between .9 and .99.” (Taleb, 2019) See Figure 8 for a series of plots that illustrate how changes in correlation and R2 compare to changes in mutual
information for standard Gaussian random variables. See Figure 9 for a plot of the relationship between mutual information and R2 for Gaussian
variables, this is also the normalization curve we use. Mutual information can capture our intuitive sense of dependence better than correlation and
R2 even in the simple Gaussian case.
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Hainmueller and Hazlett, 2014; Ferwerda et al., 2017) There is estimation error in these, since mutual information can be
difficult to estimate in practice, but the Figures should still be informative.19 We see that NSMI is larger that η2 but is
often very comparable. When η2 does a poor job of capturing the full relationship between the variables, NSMI can be much
larger than η2. Lu (2011)’s L-measure is close to or larger than NSMI. So it is possible to reason about the L-measure as an
approximation or as a bound on NSMI. See Appendix A Section A.6 for more detail on NSMI and the L-measure. See Figure
8 for a series of plots that illustrate how changes in correlation and R2 compare to changes in mutual information for standard
Gaussian random variables. In the Gaussian case, NSMI equals R2; and so interpretation of NSMI should be familiar.

Figure 3: NSMI Examples. These are generated with various linear and non-linear relationships between x and y. The blue
line is an linear fit. The red line is a flexible fit or the true non-linear relationship.

Discussion of bounds Theorems 2 and 3 contain several bounds. All the bounds presented in Theorem 3 correspond to
bound 1 from Theorem 2. Analogs to bounds 2-6 from Theorem 2 can also be created for the case where there are covariates
X. We expect that the simplest bound to use will often be bound 6 from Theorem 2. See the worked example below for an
example of how bound 6 from Theorem 2 can be adapted to include covariates.

Bounds 1 through 3 in Theorem 2 are tighter than bounds 4 through 6, but require additional sensitivity parameters as
well as some knowledge about how mutual information works. That is, since some of the NSMI quantities are related in the
bounds in Theorem 2, users need to take care to reason about coherent combinations of the NSMI quantities. In particular,
the bounds all take the form 1− (τ)

1
p(S=1) but with different τ ; τ must take a value between 0 and 1. This reflects the fact

that 1− (1−NSMI(W ;D|S))
1

p(S=1) equals bounds 1 through 3 and NSMI(W ;D|S) takes values between 0 and 1. This, in
turn, reflects that MI(D;W |S) = MI(D;W )+MI(S; [D,W ])−MI(S;D)−MI(S;W ) ≥ 0. For this reason, we encourage users
unfamiliar with mutual information to use bounds 4 through 6, where the condition that τ ∈ [0, 1] will always be satisfied
given NSMI values between 0 and 1. If W and D are assumed to be marginally independent, then NSMI(D;W ) = 0 and
this term can be removed from the bounds. Which bound is most useful depends on the relationships that practitioners feel
comfortable reasoning about in terms of NSMI’s.

19In addition, we present the L-measure and Ω. See the discussion in Appendix A Section A.6 for more detail on NSMI and Ω.
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Figure 4: More NSMI Examples. These are generated by selecting a non-random sample from two uniform random variables.
S is the sample selection variable. The blue line is an linear fit. The red line is a flexible fit.

We consider in detail bound 6 from Theorem 2. This bound is an expression of normalized scaled mutual information for the
marginal mutual information between D and W , for the mutual information between S and [D,W ] together, and the probability
of selection, P (S = 1).20 As we saw in the case of binary random variables and truncated normal random variables, we have an
expression in terms of structural (i.e., causal) relationships between the variables in the full population. In Figure 5, we show
how bound 6 from Theorem 2 changes for different values of NSMI(S; [D,W ]) and p(S = 1). For this, we assume that that
W,D are marginally independent and so NSMI(D;W ) = 0 and the bound becomes B

∆
= 1− (1−NSMI(S; [D,W ]))

1
p(S=1) . As

p(S = 1)→ 1, B → NSMI(S; [D,W ]). As p(S = 1)→ 0, B → 1. As NSMI(S; [D,W ])→ 1, B → 1. As NSMI(S; [D,W ])→ 0,
B → 0. These dynamics are easy to see in the expression for the bound itself. They reflect the bounds on MI(W ;D|S = 1)
that we then scale and normalize. It is worth noting that this bound is not always informative (i.e., smaller than 1); small
probabilities of selection can lead to high bounds, regardless of the value for NSMI(S; [D,W ]). This reflects that, when the
selection probability is small, NSMI(S; [D,W ]) carries much less information about the stratum S = 1 than it does about the
stratum S = 0.

4 Worked example
We now turn our attention to a real application and demonstrate how a sensitivity analysis for sample selection may proceed
based on the discussion above. Hazlett (2020) considers the effect of being directly harmed in the conflict in Darfur in early
2000s on attitudes about peace using a survey of individuals in refugee camps. The article argues that “violence was targeted

20P (S = 1) can be thought of as the proportion of the population that the sub population for which our selected sample is a representative
sample represents. It is not the size of our data sample relative to the size of the population. Note that it is important to have a clear sense of the
population from which the sample has been selected here, but this is already required to be able to think about the sample selection mechanism
in the first place and hence know whether conditioning on W will yield conditional ignorability or not. Alternatively, we might think about the
P (S = 1) that would bring the estimated result to zero.
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Figure 5: Bound 6 from Theorem 2 on R2
D∼W |S=1 and η2D∼W |S=1 given values for NSMI(S; [D,W ]) and p(S = 1) and

assuming NSMI(D;W ) = 0

by village and gender but was indiscriminate beyond this” and that the “evidence is consistent not with the ‘angry’ response
but rather with claims of a ‘pro-peace’ or ‘weary’ effect of exposure to violence.” The author describes that “Most refugees or
internally displaced persons left their homes during 2003 to 2004. A large number of those in the Western regions of West
Darfur made the decision to cross the border into eastern Chad. Very few of these refugees had returned home by the time of
this survey in mid-2009, when approximately 250,000 Darfurians were registered in refugee camps in eastern Chad.” The
study relies on data “drawn from a survey conducted between April and June of 2009 by the ‘Darfurian Voices’ team with
support of the US Department of State... The full survey was thus representative of adult refugees (eighteen years or older)
from Darfur, living in the twelve Darfurian refugee camps in eastern Chad at the time of sampling.”

The study controls for things like village, gender, and other important covariates in estimating the causal effect of being
directly harmed on attitudes about peace. While adjustment for these covariates likely reduces non-causal association between
the treatment and outcome, being harmed may effect whether someone re-entered the conflict (and hence was not captured in
the survey). An individual’s pro-peace predisposition (before the conflict) may be a common cause of both whether they
re-entered the conflict and their peace attitudes at the time of the survey. This may create a non-causal path running from
harm to pro-peace predisposition to attitude about peace that could threaten the internal validity of estimated effects. In
Figure 6, D is direct harm, Y is attitudes about peace, W is pro-peace predisposition (before the conflict), S is being in the
survey from the refugee camp (i.e., did not re-enter the conflict), and X is observed covariates like village and gender. Hazlett
(2020) is able to adjust for the observed covariates, but the path D−−Z → Y cannot be blocked since pro-peace predisposition
is not observed. That is, we are able to estimate an effect controlling for age, gender, village, and other covariates. But this
effect could be biased by the spurious relationship created by sample selection as a collider between direct harm (D) and
pro-peace predisposition (W ). Using OLS regression (among other estimation strategies), Hazlett (2020) estimates that peace
index is .09 to .10 units higher among those directly harmed. See Table 1.

Table 1: Causal effect estimate from Hazlett (2020)
Outcome: peace factor
Treatment: Est. S.E. t-value
directly harmed 0.097 0.023 4.184
df = 783

The process that would drive individuals back into the conflict would “act more powerfully for men of fighting age because

10
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Figure 6: Possible sample selection bias in Hazlett (2020)
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in this context, few women or elderly participate directly in the armed opposition groups. If such a process drove the results,
we would see the apparent effect most strongly among young men but should see little or no apparent effect among women or
the elderly who are far less likely to join the opposition. This is not the case.” (Hazlett, 2020) We might then claim that
the effect of direct harm on peace attitudes among women and the elderly is perhaps not biased by this sample selection
mechanism. But this sample selection mechanism might not allow us to obtain an internally valid effect estimate for fighting
age men.

We can use the bounds from Theorems 2 and 3 in a sensitivity analysis for linear regression following Cinelli and Hazlett
(2020) using the software from Cinelli et al. (2020). This omitted variable bias based sensitivity analysis requires that we
consider hypothetical values for R2

W∼D|X,S=1 and R2
Y∼W |D,X,S=1. Inspecting Figure 6, we see that R2

Y∼W |D,X,S=1 captures
just the causal path W → Y , that is, the strength of the relationship between pro-peace predisposition (W ) and attitudes
about peace after the conflict (Y ) after controlling for observed covariates (X) like village and gender. This is a structural
relationship that we will be able to build some intuition about. On the other hand, reasoning about R2

W∼D|X,S=1 is more
difficult. This captures the path W −−D and relates to the strength of the relationship between pro-peace predisposition
(W ) and direct harm (D) within the selected sample of refugees that did not reenter the fight after controlling for observed
covariates (X) like village and gender. These variables do not have a direct relationship in the population that we can
build intuition about that would allow us to directly reason about R2

W∼D|X,S=1. In fact, the assumption in Figure 6 is that
pro-peace predisposition (W ) is independent of direct-harm (D) in the population, conditional on the observed covariates like
village and gender. So their entire relationship is created as a result of conditioning on a collider due to sample selection.

Given the difficulty in interpreting and building intuition for R2
D∼W |X,S=1, we use bound 2 from Theorem 3 to bound

R2
D∼W |X,S=1, where we assume that D and W are independent conditional on X in the population. We also choose a bound

analogous to bound 6 from Theorem 2. The bound we use is therefore

R2
W∼D|X,S=1 ≤

1

1−R2
D∼X|S=1

×
(
1− [1−NSMI(D;X|S = 1)] [1−NSMI(S; [D,W ]|X)]

1
p(S=1) −R2

D∼X|S=1

)
,

where we estimate R2
D∼X|S=1 from the data and approximate NSMI(D;X|S = 1) based on that estimate. We simply

assume that we have the worst case where R2
W∼D|X,S=1 equals this bound and substitute the bound into the bias expression

provided in Cinelli and Hazlett (2020) and use this to calculate revised estimates for hypothesized values of R2
YW |D,X,S=1,

NSMI(S; [D,W ]|X), and p(S = 1). Contour plots that show the surface of revised estimates for the breadth of values these
three sensitivity parameters can take are displayed in Figure 7.

We can take 1− p(S = 1) to represent the portion of refugees that reentered the fighting and were, therefore, not eligible
to be captured by the survey. Focusing on the individuals who survived their injuries, we might suppose that no more than
say 20% of individuals reentered the fighting. In reality it is likely far less than 20%. If we believe this is plausible, we might
then consider the contour plot at the bottom middle of Figure 7. We may believe that no unobserved variable, including
pro-peace predisposition, will explain more of the outcome than the female variable. We show 1x, 2x, and 3x how much the
female variable explains of the outcome in the contour plots. In the p(S = 1) = 0.8 panel of Figure 7, we see that assuming
that R2

Y∼W |D,X,S=1 equals the partial R2 between the female variable and the outcome, peace index, an NSMI(S, [D,W ]|X)
of about 0.13 or so would bring our effect estimate to zero.

Do we think that an NSMI(S, [D,W ]|X) of 0.13 or more is plausible? NSMI(S, [D,W ]|X) can be thought of as the
proportion of the certainty inherent to whether someone re-enters the fight, given that we know whether they were directly
harmed and their pro-peace pre-disposition (as well as their gender, village, and other observed covariates), that is gained as
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Figure 7: Sensitivity analysis contour plots for Darfur example. Contours represent revised effect estimates.

a result of learning whether they were directly harmed and their pro-peace pre-disposition. If S and [D,W ] shared a joint
Gaussian distribution, then this would correspond to an R2 of 0.13; and recall that NSMI can be thought of as the R2 of
the linearized model. We might suspect that most of the decision to reenter the fight would be explained by gender, age,
and village, all of which we control for. The question becomes to what extent does reentering the fight depend on pro-peace
predisposition and direct harm, after controlling for the observed covariates. Overall, the relationship (i.e., shared or mutual
information) between direct harm and reentering the fight largely stems from the common cause of gender. Conditional on
gender, direct harm and reentering the fight likely share dramatically less information. However, there may still be some weak
direct effect of direct harm on reentering the fight. This could result from some harmed individuals being more apprehensive
than unharmed individuals to return. It could also result from from some harmed individuals being more vengeful. The latter
is likely not a strong effect and the former is also likely weak, considering relatively few refugees returned overall. Similarly,
the relationship (i.e., shared or mutual information) between pro-peace predisposition and reentering the fight largely stems
from the common causes of gender and age. Conditional on gender and age, there still could be a direct effect of pro-peace
predisposition on reentering the fight. This might result from individuals with less peaceful pre-conflict attitudes being more
likely to reenter the fight. However, pre-conflict peace attitudes and direct harm, together, are likely much less important
determinants of who reentered the fighting than are familial ties (e.g., having family members in conflict zone or in the refugee
camps), concerns about saftey, gender, and age. That is, the sample selection mechanism is likely primarily driven by factors
other than pre-conflict attitudes and direct harm. A complex decision like this likely is the result of numerous social and
personal factors, as is any social phenomenon. So we should expect that there is a relatively weak dependency between these
three as captured by NSMI(S, [D,W ]|X), perhaps less that 0.13, which is a fairly week dependence relationship in general.
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Again, all the discussion in this paragraph assumes that pro-peace predisposition explains just as much of peace attitudes as
female. If say, pro-peace predisposition explains less than half as much of peace attitudes as female, then we could tolerate an
NSMI(S, [D,W ]|X) of up to perhaps 0.25. Perhaps reentering the fight would not have such a strong dependence on pro-peace
predisposition and direct harm in essentially any plausible setting. In this case, we might be able to conclude that our effect
estimate would not change sign of our estimate, despite this level of sample selection bias. Additionally, the true portion of
refugees that re-entered the fight is likely much less that 20%. So even larger NSMI(S, [D,W ]|X)’s are likely tolerable.

This type of analysis shifts criticism away from whether or not there exists a threat of sample selection bias towards
substantive discussions like the previous paragraph that attempt to discern whether some substantive structural relationships
meet a threshold level of strength that would change the conclusions of the estimated effect. We hope that this example
provides some guidance to how such sensitivity analysis can be conducted in practice.

5 Discussion
Other approaches to sensitivity analysis for sample selection have been proposed. Smith and VanderWeele (2019) discuss
approaches with sensitivity parameters that capture the relationships between unobserved variables and the observed variables,
as we do here. However, building intuition for their parameters may not be as familiar as using R2s or η2s. Moreover, in
their discussion of “the selected population as the target population,” they only provide heuristic guidance on how researchers
might deal with the counterintuitive nature of sensitivity parameters capturing associations between marginally independent
variables that are made dependent due to sample selection. Thompson and Arah (2014) also present an approach for sensitivity
analysis for sample selection. This approach requires specifying sensitivity parameters that filter into a model of the selection
mechanism. Greenland (2003); Hernán et al. (2004); Elwert and Winship (2014); Infante-Rivard and Cusson (2018); Arah
(2019), and many others also provide insightful discussions into sample selection bias and potential remedies. The benefit of
our approach is the ease of interpretation of the sensitivity parameters and connections to the very useful, existing omitted
variable bias based sensitivity analysis frameworks of Cinelli and Hazlett (2020) and Chernozhukov et al. (2022).
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A Appendix

A.1 Traditional OVB and its reparameterization
Cinelli and Hazlett (2020) reparameterize omitted variable bias in terms of partial R2’s in the hopes of making sensitivity
analysis more straight forward and the sensitivity parameters more interpretable. Traditional OVB analysis uses the
Frisch–Waugh–Lovell theorem as follows.

β̂Y∼D|X,S=1 =
Ĉov(D⊥X , Y ⊥X |S = 1)

V̂ar(D⊥X |S = 1)

=
Ĉov(D⊥X , β̂Y∼D|W,X,S=1D

⊥X + β̂Y∼W |D,X,S=1W
⊥X |S = 1)

V̂ar(D⊥X |S = 1)

= β̂Y∼D|W,X,S=1 + β̂Y∼W |D,X,S=1
Ĉov(D⊥X ,W⊥X |S = 1)

V̂ar(D⊥X |S = 1)

= β̂Y∼D|W,X,S=1 + β̂Y∼W |D,X,S=1β̂W∼D|X,S=1

Cinelli and Hazlett (2020) then take the following additional steps to rewrite bias.

=⇒ b̂ias = β̂Y∼D|X,S=1 − β̂Y∼D|W,X,S=1 = β̂Y∼W |D,X,S=1β̂W∼D|X,S=1

= Ĉor(Y ⊥D,X ,W⊥D,X |S = 1)
ŜD(Y ⊥D,X |S = 1)

ŜD(W⊥D,X |S = 1)
Ĉor(W⊥X , D⊥X |S = 1)

ŜD(W⊥X |S = 1)

ŜD(D⊥X |S = 1)

=
ŜD(Y ⊥D,X |S = 1)

ŜD(D⊥X |S = 1)

ŜD(W⊥X |S = 1)

ŜD(W⊥D,X |S = 1)
Ĉor(Y ⊥D,X ,W⊥D,X |S = 1)Ĉor(W⊥X , D⊥X |S = 1)

=
ŜD(Y ⊥D,X |S = 1)

ŜD(D⊥X |S = 1)

Ĉor(Y ⊥D,X ,W⊥D,X |S = 1)Ĉor(W⊥X , D⊥X |S = 1)√
1− Ĉor(W⊥X , D⊥X |S = 1)2

We can then see that the magnitude of bias can be written in terms of partial R2’s and summary information that is
typical in standard OLS output.

=⇒ |b̂ias| = ŜD(Y ⊥D,X |S = 1)

ŜD(D⊥X |S = 1)

√√√√R2
Y∼W |D,X,S=1R

2
W∼D|X,S=1

1−R2
W∼D|X,S=1

= se(β̂Y∼D|X,S=1)

√√√√dfS=1

R2
Y∼W |D,X,S=1R

2
W∼D|X,S=1

1−R2
W∼D|X,S=1

where se(β̂Y∼D|X,S=1) =
ŜD(Y ⊥D,X |S=1)√

dfS=1ŜD(D⊥X |S=1)
is the standard error from the regression using the selected sample and dfS=1

are that regression’s degrees of freedom.

A.2 R2
D∼W |X,S=1 for binary random variables

Nguyen et al. (2019) provide the expression in Equation 8 for Cov(W,D|S = 1) for binary variables W,D,S in their Lemma 1.

Cov(W,D|S = 1) =
1

P (S = 1)2

[
P (W = 1, D = 1, S = 1)P (W = 0, D = 0, S = 1)−
P (W = 1, D = 0, S = 1)P (W = 0, D = 1, S = 1)

]
(8)

To simplify things, we assume that data are generated according to the the simple collider graph: D → S ← W . Nguyen
et al. (2019) show that in this setting, we can write Cov(W,D|S = 1) as in Equation 9, where PW=w = P (W = w),
PD=d = P (D = d), PS=1 = P (S = 1), and PS=1|wd = P (S = 1|W = w,D = d).

Cov(W,D|S = 1) =
PW=1PD=1PW=0PD=0

P 2
S=1

[PS=1|11PS=1|00 − PS=1|10PS=1|01] (9)
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We can then express Cor(W,D|S = 1) as follows.

Cor(W,D|S = 1) =
Cov(W,D|S = 1)√

Var(W |S = 1)Var(D|S = 1)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]
PW=1PD=1PW=0PD=0

P 2
S=1

√
Var(W |S = 1)Var(D|S = 1)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]

√
P 2
W=1P

2
D=1P

2
W=0P

2
D=0

P 4
S=1P (W = 1|S = 1)P (W = 0|S = 1)P (D = 1|S = 1)P (D = 0|S = 1)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]

√
P 2
W=1P

2
D=1P

2
W=0P

2
D=0

P (W = 1, S = 1)P (W = 0, S = 1)P (D = 1, S = 1)P (D = 0, S = 1)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]

√
PW=1PD=1PW=0PD=0

P (S = 1|W = 1)P (S = 1|W = 0)P (S = 1|D = 1)P (S = 1|D = 0)

= [PS=1|11PS=1|00 − PS=1|10PS=1|01]

√√√√√ PW=1PD=1PW=0PD=0(
[PS=1|11PD=1 + PS=1|10PD=0][PS=1|01PD=1 + PS=1|00PD=0]×
[PS=1|11PW=1 + PS=1|01PW=0][PS=1|10PW=1 + PS=1|00PW=0]

)
So we see that R2

WD|S=1 can be written in terms of six probabilities (PS=1|11, PS=1|00, PS=1|10, PS=1|01, PW=1, PD=1) as shown
in Equation 10, since PW=0 = 1− PW=1 and PD=0 = 1− PD=1.

R2
W∼D|S=1 = [PS=1|11PS=1|00 − PS=1|10PS=1|01]

2 PW=1PD=1PW=0PD=0(
[PS=1|11PD=1 + PS=1|10PD=0][PS=1|01PD=1 + PS=1|00PD=0]×
[PS=1|11PW=1 + PS=1|01PW=0][PS=1|10PW=1 + PS=1|00PW=0]

) (10)

The relationship between W and D in the selected sample (S = 1) can be expressed in terms of the relationships between S
and W,D, in the full population, where we also need P (D = 1), P (W = 1). In this setting, P (S = 1) is actually not needed
directly, since it cancelled out. All of these quantities should be easy for researchers to reason about, since they capture
structural (i.e., causal) relationships between the variables.

A.3 R2
D∼W |X,S=1 for truncated multivariate normal random variables

To provide some intuition into how we might try to think about R2
D∼W |X,S=1, we consider the simple case where W,D,S

have the causal structure shown in Figure 2 and W,D,S0 have a multivariate normal joint distribution and S = 1[S0 ≥ C] for
some C ∈ R. Here X = {∅}. S0 is a hypothesized latent variable that captures how W and D relate to S. The bidirected
edge captures that W,D could have some relationship other than that created by conditioning on S. Within the stratum
S = 1, we have a truncated multivariate normal joint distribution.

The post-selection covariance matrix The pre-selection covariance matrix for S0, D,W can be written as Σ = σ2
S0

σS0D σS0W

σS0D σ2
D σWD

σS0W σWD σ2
W

 =

[
Σ11 Σ12

Σ21 Σ22

]
, where Σ11 = σ2

S0
, Σ12 = Σ⊤

21 =
[
σS0D σS0W

]
, and Σ22 =

[
σ2
D σWD

σWD σ2
W

]
. Since

we’re interested in how the relationships between the variables change due to selection, we’re interested in the covariance
matrix after truncation, which can be written in terms of the pre-selection covariances:

Σ∗ =

[
K11 K11Σ

−1
11 Σ12

Σ21Σ
−1
11 K11 Σ22 − Σ21(Σ

−1
11 − Σ−1

11 K11Σ
−1
11 )Σ12

]
=

[
Σ∗

11 Σ∗
12

Σ∗
21 Σ∗

22

]
,

where K11 = σ2
S0

[
1 + Cϕ(C)

1−Φ(C) −
(

ϕ(C)
1−Φ(C)

)2]
= σ2

S0

[
1 + Cγ − γ2

]
, letting γ = ϕ(C)

1−Φ(C) , which is the inverse Mills ratio. (Kotz

et al., 2000; Manjunath and Wilhelm, 2021) S = 1[S0 ≥ C] ⇐⇒ P (S = 1) = P (S0 ≥ C) = P (S0 ≤ −C) = Φ(−C) ⇐⇒
C = −Φ−1(P (S = 1)) (here we assume S0 ∼ N (0, 1), which can be done without loss of generality; see below). ϕ(·), Φ(·),
and Φ−1(·) are the pdf, cdf, and quantile function of the standard normal distribution. Now, we’re interested in Σ∗

22, which
contains σ∗

DW , the covariance between D and W after truncation.
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Σ∗
22 = Σ22 − Σ21(Σ

−1
11 − Σ−1

11 K11Σ
−1
11 )Σ12

= Σ22 − Σ21

(
1

σ2
S0

−
σ2
S0

[
1 + Cγ − γ2

]
σ4
S0

)
Σ12

= Σ22 −
δ

σ2
S0

Σ21Σ12, where δ =
[
1 + Cγ − γ2

]
=

[
σ2
D σWD

σWD σ2
W

]
− δ

σ2
S0

[
σS0D

σS0W

] [
σS0D σS0W

]
=

[
σ2
D σWD

σWD σ2
W

]
− δ

σ2
S0

[
σ2
S0D

σS0DσS0W

σS0DσS0W σ2
S0W

]
=⇒ σ∗

ab = σab −
σS0aσS0b

σ2
S0

δ, ∀a, b ∈ {D,W}

=⇒ σ∗
DW = σDW −

σS0DσS0W

σ2
S0

δ

We can assume S0 ∼ N (0, 1) WOLOG Suppose that S0 = aD + bW + US0
= X⊤ξ + US0

, where US0
∼ N (µ, σ),

X =
[
D W

]
, and ξ =

[
a b

]
. Since D,W,US0

are all normal random variables, so is S0. Let S′
0 = S0−E[S0]

SD[S0]
= a

SD[S0]
D +

b
SD[S0]

W + 1
SD[S0]

US0
− E[S0]

SD[S0]
= X⊤ξ′ + 1

SD[S0]
US0
− E[S0]

SD[S0]
, where ξ′ =

[
a

SD[S0]
b

SD[S0]

]
. Since we standardized S0 to get S′

0,
we know that S′

0 ∼ N (0, 1). We also know that S′
0 is still a linear function of D, W , and US0

. It’s also easy to see how this
can be extended so that X and ξ include other variables and path coefficients. Finally, we can see that

S = 1[S0 ≥ C] = 1

[
S0 − E[S0]

SD[S0]
≥ C− E[S0]

SD[S0]

]
= 1[S′

0 ≥ C′]

⇐⇒ P (S = 1) = P (S′
0 ≥ C′) = Φ(−C′) ⇐⇒ C′ = −Φ−1(P (S = 1))

So we can adjust the path coefficients we’re considering and use S′
0 rather than S0 and just think of S0 ∼ N (0, 1). As we saw

above, we can then just consider the entire relationship between S and other variables, rather than the relationships with S0,
since we can assume S0 ∼ N (0, 1).

Expression for R2
WD|S=1 We can derive an expression similar to the partial correlation formula for truncated correlation

and hence R2. We can see that this is almost identical to the partial correlation formula, but for the δ’s. This clarifies the
difference between conditioning and truncation for normal random variables.

ρWD|S=1 = ρWD|S0≥C = ρ∗WD =
σ∗
WD

σ∗
Dσ∗

W

=
σWD −

σS0DσS0W

σ2
S0

δ√
σ2
D −

σ2
S0D

σ2
S0

δ

√
σ2
W −

σ2
S0W

σ2
S0

δ

=
ρWDσDσW −

ρS0DσS0
σDρS0WσS0

σW

σ2
S0

δ√
σ2
D −

(ρS0DσS0
σD)2

σ2
S0

δ

√
σ2
W −

(ρS0WσS0
σW )2

σ2
S0

δ

=
σDσW (ρWD − ρS0DρS0W δ)

σDσW

√
1− ρ2S0D

δ
√
1− ρ2S0W

δ

=
ρWD − ρS0DρS0W δ√
1− ρ2S0D

δ
√
1− ρ2S0W

δ

ρWD|S0
=

ρWD − ρS0DρS0W√
1− ρ2S0D

√
1− ρ2S0W

We see that the relationship between W and D in the selected (truncated) sample can be expressed in terms of the relationships
between S0,W and S0, D as well as between W and D, in the full population. We also need P (S = 1), the probability of

selection or the cut point C, since δ = f(P (S = 1)). If ρWD = 0, then R2
W∼D|S=1 =

R2
S0∼DR2

S0∼W δ√
1−R2

S0∼Dδ
√

1−R2
S0∼W δ

.

Expression in terms of relationships with S, not S0 We now explore how we can express R2
WD|S=1 in terms of the

relationships between S,W and S,D, rather than between S0,W and S0, D. This is useful, since here S0 is a hypothesized
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latent variable, not a substantive variable. We can express ρS0W and ρS0D in terms of ρSW and ρSD. To see this, we borrow
two results from Ding and Miratrix (2015). Assume (X1, X2) follows a bivariate normal with mean (µ1, µ2) and variance(

σ2
1 σ12 = ρ12σ1σ2

σ12 = ρ12σ1σ2 σ2
2

)
. Then for Z1 ∼ N (0, 1), Z2 ∼ N (0, 1), and independent from X1, X2 we can write

X1 = µ1 + σ1Z1 =⇒ Z1 =
X1 − µ1

σ1

X2 = µ2 + σ2

[
ρ12Z1 +

√
1− ρ212Z2

]
= µ2 + σ2ρ12Z1 + σ2

√
1− ρ212Z2

= µ2 + σ2ρ12

[
X1 − µ1

σ1

]
+ σ2

√
1− ρ212Z2

= µ2 − ρ12
σ2

σ1
µ1 + ρ12

σ2

σ1
X1 + σ2

√
1− ρ212Z2

=⇒ E[X2|X1 ≥ α] = E[µ2 − ρ12
σ2

σ1
µ1 + ρ12

σ2

σ1
X1 + σ2

√
1− ρ212Z2|X1 ≥ α]

= µ2 − ρ12
σ2

σ1
µ1 + ρ12

σ2

σ1
E[X1|X1 ≥ α]

E[X2|X1 < α] = E[µ2 − ρ12
σ2

σ1
µ1 + ρ12

σ2

σ1
X1 + σ2

√
1− ρ212Z2|X1 < α]

= µ2 − ρ12
σ2

σ1
µ1 + ρ12

σ2

σ1
E[X1|X1 < α]

=⇒ E[X2|X1 ≥ α]− E[X2|X1 < α] = ρ12
σ2

σ1
(E[X1|X1 ≥ α]− E[X1|X1 < α]) = ρ12

σ2

σ1

(
f1(α)

F1(−α)
− −f1(α)

F1(α)

)
= ρ12

σ2

σ1
f1(α)

(
1

F1(−α)
+

1

F1(α)

)
= ρ12

σ2

σ1
f1(α)

(
F1(α) + F1(−α)
F1(α)F1(−α)

)
= ρ12

σ2

σ1

f1(α)

F1(α)F1(−α)
=

σ12

σ2
1

f1(α)

F1(α)F1(−α)

If the marginal distribution of X1 is N (0, 1) then this becomes E[X2|X1 ≥ α]− E[X2|X1 < α] = σ12
ϕ(α)

Φ(α)Φ(−α) . (Ding and
Miratrix, 2015) Therefore, we have

E[W |S = 1]− E[W |S = 0] = E[W |S0 ≥ C]− E[W |S0 < C] = σS0W
ϕ(C)

Φ(C)Φ(−C)

E[D|S = 1]− E[D|S = 0] = E[D|S0 ≥ C]− E[D|S0 < C] = σS0D
ϕ(C)

Φ(C)Φ(−C)

For random variables X,B where B ∼ Bernoulli(p), Cov(X,B) = σxb = p(1 − p) [E(X|B = 1)− E(X|B = 0)]. (Ding and
Miratrix, 2015) So we see that

σSD = P (S = 1)(1− P (S = 1)) [E(D|S = 1)− E(D|S = 0)]

= Φ(C)Φ(−C) [E(D|S = 1)− E(D|S = 0)]

= Φ(C)Φ(−C)σDL
ϕ(C)

Φ(C)Φ(−C)
= σS0Dϕ(C)

⇐⇒ σS0D =
σSD

ϕ(C)

⇐⇒ ρS0D =
σSD

σDσS0
ϕ(C)

σS

σS
= ρDS

σS

σS0
ϕ(C)

= ρDS

√
P (S = 1)(1− P (S = 1))

σS0
ϕ(C)

= ρDS

√
Φ(C)Φ(−C)

σS0
ϕ(C)

= ρDS

√
Φ(C)Φ(−C)

ϕ(C)
.

The last equality uses S0 ∼ N (0, 1) We can do the same thing for ρWL. So we have that ρS0D = ρSDξ and ρS0W = ρSW ξ,

where ξ =

√
Φ(C)Φ(−C)

ϕ(C) can be written as a function of P (S = 1). We can then write

ρWD|S=1 =
ρWD − ρSDρSW θ√
1− ρ2SDθ

√
1− ρ2SW θ

,
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where θ = ξ2δ can be written as functions of P (S = 1) or C. First, recall that ξ =

√
Φ(C)Φ(−C)

ϕ(C) , δ =
[
1 + Cγ − γ2

]
, and

γ = ϕ(C)
1−Φ(C) . So we can write θ in terms of C as follows or in terms of P (S = 1) by plugging in C = −Φ−1(P (S = 1)).

θ = ξ2δ =

(√
Φ(C)Φ(−C)

ϕ(C)

)2 [
1 + C

ϕ(C)

1− Φ(C)
−
(

ϕ(C)

1− Φ(C)

)2
]

=
Φ(C)(1− Φ(C))

ϕ(C)2
+

CΦ(C)

ϕ(C)
− Φ(C)

1− Φ(C)

If ρWD = 0, then R2
W∼D|S=1 =

R2
S∼DR2

S∼W ξ2δ√
1−R2

S∼Dξ2δ
√

1−R2
S∼W ξ2δ

. We now see that the relationship between W and D in the

selected (truncated) sample can be expressed in terms of the relationships between S,W and S,D as well as between W and
D, in the full population, where we also need P (S = 1), the probability of selection. All of these quantities should be easy for
researchers to have knowledge about and to reason about, since they capture structural (i.e., causal) relationships between the
variables.

A.4 “Constant selection effects”
Suppose we would like to assume something like constant treatment effects but for R2 between D and W after sample
selection (e.g., something like R2

W∼D|S=1 equals R2
W∼D|S=0) as a way of simplifying our analysis of R2

W∼D|S=1. What
assumptions might make sense? What expression would this provide for R2

W∼D|S=1? First, we expand Cor(W,D|S) into an
expression of Cor(W,D|S = 1) and Cor(W,D|S = 0). Note that this is not a convex combination. That is the coefficients on
Cor(W,D|S = 1) and Cor(W,D|S = 0) do not sum to 1.

Cor(W,D|S) = Cov(W,D|S)
SD(W |S)SD(D|S)

=
p(S = 1)Cov(W,D|S = 1) + p(S = 0)Cov(W,D|S = 0)

SD(W |S)SD(D|S)

=
p(S = 1)Cov(W,D|S = 1)

SD(W |S)SD(D|S)
+

p(S = 0)Cov(W,D|S = 0)

SD(W |S)SD(D|S)

=
p(S = 1)SD(W |S = 1)SD(D|S = 1)

SD(W |S)SD(D|S)
Cor(W,D|S = 1) +

p(S = 0)SD(W |S = 0)SD(D|S = 0)

SD(W |S)SD(D|S)
Cor(W,D|S = 0)

=
√
(A)(B)Cor(W,D|S = 1) +

√
(1−A)(1−B)Cor(W,D|S = 0)

where A =
p(S = 1)Var(W |S = 1)

Var(W |S)
=

p(S = 1)Var(W |S = 1)

p(S = 1)Var(W |S = 1) + p(S = 0)Var(W |S = 0)
∈ [0, 1]

B =
p(S = 1)Var(D|S = 1)

Var(D|S)
=

p(S = 1)Var(D|S = 1)

p(S = 1)Var(D|S = 1) + p(S = 0)Var(D|S = 0)
∈ [0, 1]

If we assume that
• Cor(W,D|S = 1) = Cor(W,D|S = 0); this makes Cor(W,D|S) =

[√
(A)(B) +

√
(1−A)(1−B)

]
Cor(W,D|S = 1)

• Var(W |S = 1) = Var(W |S = 0); this makes A = p(S = 1)
• Var(D|S = 1) = Var(D|S = 0); this makes B = p(S = 1)

These three together make Cor(W,D|S) = [p(S = 1) + (1− p(S = 1))]Cor(W,D|S = 1) = Cor(W,D|S = 1) =⇒ R2
W∼D|S=1 =

R2
W∼D|S . We can then leverage the partial correlation formula to arrive at

R2
W∼D|S=1 = R2

W∼D|S =

(
RW∼D −RS∼WRS∼D√
1−R2

S∼W

√
1−R2

S∼D

)2

A.5 An often uninformative bound
In this section, we consider an bound on R2

WD|S=1 that follows an approach similar to the last section but where we do not
make the assumptions from that section. From above, we have that

Cor(W,D|S) =
√

(A)(B)Cor(W,D|S = 1) +
√

(1−A)(1−B)Cor(W,D|S = 0)
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So we see that

R2
W∼D|S = Cor2(W,D|S) =

[√
(A)(B)Cor(W,D|S = 1) +

√
(1−A)(1−B)Cor(W,D|S = 0)

]2
= (A)(B)R2

W∼D|S=1︸ ︷︷ ︸
≥0

+(1−A)(1−B)R2
W∼D|S=0︸ ︷︷ ︸

≥0

+2
√
A(1−A)B(1−B)RW∼D|S=1RW∼D|S=0

=⇒ R2
W∼D|S=1 ≤ min

(
1

AB

[
R2

W∼D|S − 2
√
A(1−A)B(1−B)RW∼D|S=1RW∼D|S=0

]
, 1

)
We see that RW∼D|S=1RW∼D|S=0 is minimized when RW∼D|S=1RW∼D|S=0 = −1.

≤ min

(
1

AB

[
R2

W∼D|S + 2
√
A(1−A)B(1−B)

]
, 1

)
Note that 2

√
A(1−A)B(1−B) is maximized at

1

2
when A = B =

1

2
.

= min

 1

AB

( R∼WD −RS∼WRS∼D√
1−R2

S∼W

√
1−R2

S∼D

)2

+ 2
√
A(1−A)B(1−B)

 , 1


We can show that

Var(W |S) = Var(W )− Cov2(W,S)

Var(S)
= Var(W )

(
1− Cov2(W,S)

Var(W )Var(S)

)
= Var(W )

(
1− Cor2(W,S)

)
= Var(W )

(
1−R2

SW

)
Var(D|S) = Var(D)− Cov2(D,S)

Var(S)
= Var(D)

(
1− Cov2(D,S)

Var(D)Var(S)

)
= Var(D)

(
1− Cor2(D,S)

)
= Var(D)

(
1−R2

SD

)
This means that

A =
p(S = 1)Var(W |S = 1)

Var(W |S)
=

p(S = 1)

1−R2
SW

Var(W |S = 1)

Var(W )
=

p(S = 1)

1−R2
SW

ΘW

B =
p(S = 1)Var(D|S = 1)

Var(D|S)
=

p(S = 1)

1−R2
SD

Var(D|S = 1)

Var(D)
=

p(S = 1)

1−R2
SD

ΘD

So we get a bound on R2
W∼D|S=1:

R2
W∼D|S=1 ≤ min

(
1

AB

[
(RW∼D −RS∼WRS∼D)2

(1−R2
S∼W )(1−R2

S∼D)
+ 2
√

A(1−A)B(1−B)

]
, 1

)
where A =

p(S = 1)

1−R2
S∼W

ΘW , B =
p(S = 1)

1−R2
S∼D

ΘD, ΘW =
Var(W |S = 1)

Var(W )
, and ΘD =

Var(D|S = 1)

Var(D)
.

The relationship between W and D in the selected sample can be expressed in terms of the relationships between S,W
and S,D as well as between W and D, in the full population, where we also need P (S = 1), ΘW , and ΘD. There are at least
two problems with this bound. First, ΘW and ΘD may not be easy to reason about or to have prior knowledge about. Second,
the bound is very often equal to 1. In fact, the bound very often equals 1 when P (S = 1) is at all far from 1. So this is not a
very useful bound.

A.6 Normalized Scaled Mutual Information Bound
Connecting R2

D∼W |S=1 and η2D∼W |S=1 We start by noting that R2
D∼W |S=1 ≤ η2D∼W |S=1. This is easy to see since

η2D∼W |S=1 = R2
D∼E[D|W,S=1]|S=1 = sup

f

[
Cor2(D, f(W )|S = 1)

]
. (Doksum and Samarov, 1995; Chernozhukov et al., 2022)

η2D∼W |S=1 measures portion of the variation in D that can be explained by E[D|W,S = 1], the conditional expectation
function (CEF).21

21The law of total variance tells us that Var(D|S = 1) = Var(E[D|W,S = 1]|S = 1) + E[Var(D|W,S = 1)|S = 1]. (Aronow and Miller, 2019)
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Correlation and mutual information for Gaussians In order to connect R2
D∼W |X,S=1 and η2D∼W |X,S=1 with mutual

information, we draw inspiration from the relationship between R2 and mutual information for random variables with Gaussian
distributions. For random variables, W and D, with a bivariate Gaussian joint distribution, there is an exact relationship
between R2 (i.e., squared correlation coefficient) and mutual information (MI); see Equation 11. (Ihara, 1993; Cover and
Thomas, 2006) Can we use something like this transformation to create a useful normalized version of mutual information for
non-Gaussian random variables?

MI(W ;D) = −1

2
log(1−R2

W∼D) ⇐⇒ R2
W∼D = 1− exp(−2×MI(W ;D)) (11)

A variation on the L-measure We follow the approach to normalizing mutual information laid out in Lu (2011) in
transforming mutual information onto the range [0,1]. This is a variation on the transformation that holds for random
variables with Gaussian joint distributions we saw in Equation 11. Many authors have considered this type of transformation
of mutual information as a way to obtain something like a non-parametric correlation based on mutual information. See
Linfoot (1957); Kent (1983); Joe (1989); Kojadinovic (2005); Speed (2011); Kinney and Atwal (2014); Asoodeh et al. (2015);
Smith (2015); Shevlyakov and Vasilevskiy (2017); Laarne et al. (2021). Lu (2011) introduces the L-measure. We define the
squared L-measure in Equation 12.

L2(X,Y )
∆
= 1− exp (−2× IF×MI(X;Y )) , where IF =

(
1

1− (MI(X;Y )/A)

)
and A = sup

U,V ∈AX,Y

MI(U ;V )22 (12)

IF is a mutual information “inflation factor.” We need to increase mutual information so that it goes to infinity when X,Y
have a strict dependence for all types of variables, not just continuous variables. (Lu, 2011) shows that

• A = min[H(X), H(Y )], when X,Y are both discrete. This implies that IF =
(

1
1−(MI(X;Y )/min[H(X),H(Y )])

)
≥ 1 since

MI(X;Y )
min[H(X),H(Y )] ∈ [0, 1]. MI(X;Y ) ≤ min[H(X), H(Y )] since H(X), H(Y ) are the information content of X,Y . The idea
is to inflate mutual information so that IF×MI(X;Y )→ +∞ as X,Y become more dependent. The relationship is a
strict dependence when MI(X;Y ) = min[H(X), H(Y )]. So A gives us the right level of inflation.

• A = H(Y ), when Y is discrete and X is continuous. This implies that IF =
(

1
1−(MI(X;Y )/H(Y ))

)
≥ 1. Similar ideas

apply here as in the last bullet.
• A = 1, when X,Y are both continuous which implies that IF = 1, since MI(X;Y ) = +∞ for continuous variables with a

strict dependence. Here no inflation is necessary.
This makes the squared L-measure is a good normalization of mutual information in that it ensures that “it is defined for any
pair of random variables, it is symmetric, its value lies between 0 and 1, it equals 0 if and only if the random variables are
independent, it equals 1 if there is a strict dependence between the random variables, it is invariant under marginal one-to-one
transformations of the random variables, and if the random variables are Gaussian distributed, it equals” their R2. (Lu, 2011)

For our purposes, a first question is: “does something like Equation 13 hold?” That is, when does R2
D∼E[D|W,S=1]|S=1 equal

1− exp (−2× IF×MI(D;E[D|W,S = 1]|S = 1))? We know that this would hold when D and E[D|W,S = 1] have a Gaussian
joint distribution within S = 1. For arbitrarily distributed variables, the relationship between D and E[D|W,S = 1] is linear.
So we would expect R2

D∼E[D|W,S=1]|S=1 and 1− exp (−2× IF×MI(D;E[D|W,S = 1]|S = 1)) to provide similar portraits of
the dependency between D and E[D|W,S = 1].

η2D∼W |S=1 = R2
D∼E[D|W,S=1]|S=1

?
≈ 1− exp (−2× IF×MI(D;E[D|W,S = 1]|S = 1)) (13)

η2D∼W |S=1 = R2
D∼E[D|W,S=1]|S=1 = 1− exp (−2×Ω× IF×MI(D;E[D|W,S = 1]|S = 1)) (14)

The question becomes whether we can alter the squared L-measure for MI(D;E[D|W,S = 1]|S = 1) to exactly recover

η2D∼W |S=1. We do this by introducing an additional mutual information scaling factor Ω
∆
=

− 1
2 log(1−R2

D∼E[D|W,S=1]|S=1)

IF×MI(D;E[D|W,S=1]|S=1) ≥ 0.
See Equation 14. This additional scaling factor, Ω, removes any discrepancy between the way that R2

D∼E[D|W,S=1]|S=1 and the
squared L-measure measure dependence between D,E[D|W,S = 1] on the scale [0,1]. Next, the data processing inequality tells
us that MI(D;E[D|W,S = 1]|S = 1) ≤ MI(W ;D|S = 1), since E[D|W,S = 1] is a function of W .23 (Cover and Thomas, 2006)

22Lu (2011) defines AX,Y , U , and V in the following way: For two arbitrary random variables X and Y , with alphabet X and Y, respectively, let
AX,Y be the set of all bivariate random vectors (U, V ) on X × Y with the same marginal distributions as X and Y . Let MI(U ;V ) represent the
mutual information between the random variables U and V .

23When the relationship between W and D is highly non-linear, MI(W ;D|S = 1) may be much larger than MI(D;E[D|W,S = 1]|S = 1).
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It is also easy to see that L2
Ω(a)

∆
= 1 − exp (−2×Ω× IF× a) ∈ [0, 1] is a monotonic increasing function of a ∈ [0,+∞),24

which means that L2
Ω(MI(D;E[D|W,S = 1]|S = 1)) ≤ L2

Ω(MI(W ;D|S = 1)). Thus, we have the relationship in Equation 15.

R2
D∼W |S=1 ≤ η2D∼W |S=1 = R2

D∼E[D|W,S=1]|S=1 = L2
Ω(MI(D;E[D|W,S = 1]|S = 1)) ≤ L2

Ω(MI(W ;D|S = 1)) (15)

What can we say about Ω? Including Ω in L2
Ω(MI(D;E[D|W,S = 1]|S = 1)) essentially cancels out IF×MI(D;E[D|W,S =

1]|S = 1) and undoes the L-measure transformation to simply return R2
D∼E[D|W,S=1]|S=1. This is not a problem, since our

goal is simply to find a normalization of mutual information quantities that allows us to write the bound η2D∼W |S=1 =

R2
D∼E[D|W,S=1]|S=1 ≤ L2

Ω(MI(W ;D|S = 1)). As we discuss in the next paragraph, we will reason about quantities like L2
Ω(MI)

directly. We do not need to directly reason about or interpret either the raw mutual information quantities, IF, or Ω. Moreover,
due to the construction of Ω, it should take values less than or equal to 1; meaning we could instead use the L-measure
as a bound. This is because the transformation of R2

D∼E[D|W,S=1]|S=1 in the numerator of Ω is the transform that turns
R2’s into mutual information for Gaussian variables. So it is an approximation to the mutual information between D and
E[D|W,S = 1], but limited to their linear relationship. If the relationship between D and E[D|W,S = 1] is fully captured
by R2

D∼E[D|W,S=1]|S=1, then Ω should be very close to 1. If there is some other way that D and E[D|W,S = 1] relate, then
Ω will be less than 1, since MI(D;E[D|W,S = 1]|S = 1) captures the full relationship and IF appropriately scales mutual
information for arbitrary random variables. Therefore, we might choose to consider the L-measure without scaling by Ω either
as an approximation or as a bound. Simulated examples support this discussion. See Figures 3 and 4.

Normalized scaled mutual information Our approach is to scale and normalize the mutual information using L2
Ω(·).

Scaling mutual information plays an important role in relating η2D∼W |S=1 and MI(D;W |S = 1). We will refer to any mutual
information quantity scaled by Ω× IF as scaled mutual information (SMI). Any mutual information quantity that is both
scaled and then normalized using L2

Ω(·) will be referred to as normalized scaled mutual information (NSMI). NSMI values
are much easier to interpret than raw mutual information values. NSMI is a useful measure of dependence between random
variables in that it satisfies the properties discussed in Rényi (1959), Smith (2015), Lu (2011), and others as the properties
possessed by “an appropriate measure of dependence.”2526

1. NSMI is defined for arbitrary pairs of random variables.
2. NSMI is symmetric.
3. NSMI takes values between 0 and 1.
4. NSMI equals 0 if and only if the variables are independent.
5. NSMI equals 1 if and only if the variables a strict dependence (functional relationship).
6. NSMI is invariant to marginal, one-to-one transformations of the variables.
7. If the variables are Gaussian distributed, then NSMI equals their R2.27
8. NSMI(D;E[D|W,S = 1]|S = 1) = R2

D∼E[D|W,S=1]|S=1 = η2D∼W |S=1.
All but the last of these are discussed in Rényi (1959), Smith (2015), and Lu (2011). The last property results from how
we’ve defined NSMI. “Furthermore, MI is invariant under monotonic transformations of variables. This means that the MI
correlation coefficient of a non-linear model (X,Y ) matches the Pearson correlation of the linearized model (f(X), g(Y )).
General conditions for f and g are described in” Ihara (1993). (Laarne et al., 2021) This statement focuses on continuous
variables and the setting where the linearized model is created using monotonic transformations. Ω will equal 1 for a linearized
model. So NSMI can be interpreted as the squared Pearson correlation (i.e., R2) of the linearized model. Figure 9 shows
the normalization curve; the normalization of SMI is precisely the normalization that turns mutual information into R2 for
Gaussian variables. Using this terminology, we see that Equation 15 implies Equation 16.

24IF in L2
Ω(a) is based on MI(D;E[D|W,S = 1]|S = 1).

25Mutual information satisfies properties 1, 2, 4, and 6. Squared Pearson correlation (i.e., R2) satisfies properties 1, 2, 3, 5, and 7.
26The transformation ℓ2(MI(X;Y )) = 1− exp (−2× MI(X;Y )) ensures that properties 2, 3, 6, and 7 are satisfied; it is the transformation that

turns mutual information into an R2 for Gaussian distributed variables. The transformation L2(MI(X;Y )) = 1 − exp (−2× IF × MI(X;Y )) is
the square of Lu (2011)’s L-measure, where IF is chosen to ensure that properties 1 and 5 are satisfied, while also maintaining properties 2, 3, 6,

and 7. The transformation NSMI(X;Y )
∆
= L2

Ω(MI(X;Y )) = 1− exp (−2×Ω× IF × MI(X;Y )) is our normalized and scaled measure of mutual
information, where Ω ≥ 0 is also chosen to ensure that property 8 is satisfied, while also maintaining properties 1 through 7. Lu (2011) demonstrates
that properties 1 through 7 hold for the L-measure. Given this, it is trivial to see that they also hold for NSMI.

27It is worth noting that, although we might be more comfortable thinking about correlations and R2’s, they are not necessarily capturing what
we expect. “Mutual Information is a nonlinear function of ρ which in fact makes it additive. Intuitively, in the Gaussian case, ρ should never be
interpreted linearly: a ρ of 1

2
carries ≈ 4.5 times the information of a ρ = 1

4
, and a ρ of 3

4
12.8 times!” (Taleb, 2019) “One needs to translate

ρ into information. See how ρ = 0.5 is much closer to [ρ =]0 than to a ρ = 1. There are considerable differences between .9 and .99.” (Taleb,
2019) See Figure 8 for a series of plots that illustrate how changes in correlation and R2 compare to changes in mutual information for standard
Gaussian random variables. See Figure 9 for a plot of the relationship between mutual information and R2 for Gaussian variables, this is also the
normalization curve we use.

23



[DRAFT]

R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ NSMI(W ;D|S = 1) (16)

Figure 8: Correlation is non-linear. Scatter plots of standard Gaussian random variables with different correlations.
Correlation of 0.5 is much more similar to correlation of 0 than to correlation of 1.

Interpreting NSMI For discrete random variables, X and Y , entropy and conditional entropy, H(X) and H(X|Y ), are
both positive. Recall that entropy can be thought of as a measure of the uncertainty or surprise in a random variable’s
outcomes. Further, MI(X;Y ) = H(X)−H(X|Y ). It is easy to see that Equation 17 holds.

NSMI(X;Y ) = 1− exp (−2×Ω× IF×MI(X;Y ))

= 1− exp (−2×Ω× IF× [H(X)−H(X|Y )])

= 1− exp ([−2×Ω× IF×H(X)]− [−2×Ω× IF×H(X|Y )])

= 1− exp (−2×Ω× IF×H(X))

exp (−2×Ω× IF×H(X|Y ))

= 1− 1− [1− exp (−2×Ω× IF×H(X))]

1− [1− exp (−2×Ω× IF×H(X|Y ))]

= 1− 1−NSH(X)

1−NSH(X|Y )
= 1− C(X)

C(X|Y )
=

C(X|Y )− C(X)

C(X|Y )

where NSH(X)
∆
= 1− exp (−2×Ω× IF×H(X))

and C(X)
∆
= 1−NSH(X) = exp (−2×Ω× IF×H(X))

(17)

NSH(X) is a normalized and scaled version of entropy that uses the same normalization and scaling as NSMI. This means
that NSH(X) takes values between zero and one and is a measure of the uncertainty in the outcomes of X, since it is a
monotonic transformation of entropy. How might we think about the 1−NSH(X) and 1−NSH(X|Y ) terms that appear in
the expression for NSMI(X;Y ) in Equation 17? 1−NSH(X) close to zero means that there is a large amount of uncertainty
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Figure 9: Normalization of Scaled Mutual Information

in the outcomes of X. 1−NSH(X) close to one means that there is very little uncertainty in the outcomes of X. As expected,
1−NSH(X) captures something very similar to NSH(X), but with the meaning of large and small values reversed. We might,
therefore, call C(X)

∆
= 1−NSH(X) a measure of lack of surprise or certainty.

Thus, NSMI(X;Y ) = C(X|Y )−C(X)
C(X|Y ) , can be thought of as a measure of the proportion of the certainty in the outcomes

of X, after we learn the value of Y , that is gained as a result of learning the value of Y . (As opposed to the proportion of
the certainty in the outcomes of X, after we learn the value of Y , that existed before we learned the value of Y , which equals

C(X)
C(X|Y ) . Note that NSMI(X;Y ) + C(X)

C(X|Y ) = 1.)
Note that NSMI(X;Y ) is not a measure of the proportion of the uncertainty in X that is reduced by learning Y , which would

be captured by NSH(X)−NSH(X|Y )
NSH(X) . But these two are closely related. Indeed, we can write NSMI(X;Y ) = C(X|Y )−C(X)

C(X|Y ) =
NSH(X)−NSH(X|Y )

1−NSH(X|Y ) . We see that the two share a numerator. It is only the denominator that differs. Both measure the change
in information we have about X but take this as a proportion of different quantities. Note that this intuition applies to both
NSMI and the L-measure.

Mutual information bounds Equation 16 seems nice. But have we solved our original problem of finding a bound on
R2

D∼W |S=1 and η2D∼W |S=1 in terms of structural descriptions of the relationships between the variables in the population? No
we haven’t. MI(W ;D|S = 1) and NSMI(W ;D|S = 1) both contain the spurious association between W and D created by
sample selection. We now aim to find structural descriptions of the relationships between the variables in the population that
can bound MI(W ;D|S = 1). These can then be normalized to provide bounds on R2

D∼W |S=1 and η2D∼W |S=1. We start by
considering MI(D;W |S). Using properties of mutual information (Cover and Thomas, 2006), we can show Equation 18.

MI(D;W |S) = MI(D;W ) + MI(S;D|W )−MI(S;D)

= MI(D;W ) + [MI(S; [D,W ])−MI(S;W )]−MI(S;D)

= MI(D;W ) + MI(S; [D,W ])−MI(S;D)−MI(S;W )

(18)

MI(S; [D,W ]) = MI(S;W ) + MI(S;D|W ) is the mutual information between S and [D,W ] jointly. We now consider
bounds on MI(D;W |S = 1). When S is binary, two positive terms (one for S = 1 and one for S = 0) are being summed to
create MI(D;W |S). See Equation 19.
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MI(D;W |S) =
∫
S
DKL

(
P(D,W )|S∥PD|S ⊗ PW |S

)
dPS

=
∑

s∈{0,1}

p(S = s)
∑
d

∫
w

p(d,w|S = s) log

[
p(d,w|S = s)

p(d|S = s)p(w|S = s)

]
dd dw

=
∑

s∈{0,1}

p(S = s)DKL
(
P(D,W )|S=s∥PD|S=s ⊗ PW |S=s

)
= p(S = 1)×DKL

(
P(D,W )|S=1∥PD|S=1 ⊗ PW |S=1

)
+ p(S = 0)×DKL

(
P(D,W )|S=0∥PD|S=0 ⊗ PW |S=0

)
= p(S = 1)MI(D;W |S = 1) + p(S = 0)MI(D;W |S = 0)

(19)

From Equations 18 and 19, we have that

MI(D;W |S = 1) ≤ MI(D;W |S)
p(S = 1)

=
MI(D;W ) + MI(S; [D,W ])−MI(D;S)−MI(W ;S)

p(S = 1)

=
MI(D;W ) + MI(S;D|W )−MI(D;S)

p(S = 1)

≤ MI(D;W ) + MI(S; [D,W ])

p(S = 1)

(20)

This gives us the simple results in Theorem 1.

Theorem 1. For random variables D,W,S, conditioning on S alters the relationship between D and W according to the
expression MI(D;W |S) = MI(D;W ) + MI(S; [D,W ])−MI(S;D)−MI(S;W ). Therefore, the change in dependence due to
conditioning on S can be characterized using mutual information according to MI(D;W |S)−MI(D;W ) = MI(S; [D,W ])−
MI(S;D)−MI(S;W ). The dependence is not changed when MI(S; [D,W ]) = MI(S;D) + MI(S;W ). When S is binary, it is
also possible to write MI(D;W |S) = p(S = 1)MI(D;W |S = 1) + p(S = 0)MI(D;W |S = 0), meaning that MI(D;W |S = 1) ≤
MI(D;W |S)

p(S=1) = MI(D;W )+MI(S;[D,W ])−MI(D;S)−MI(W ;S)
p(S=1) .

So we see that we have a bound on MI(D;W |S = 1). Every component of these bounds is something that we might
have external knowledge or intuition on. From Theorem 1, we have a few relationships we can consider as bounds on
MI(D;W |S = 1). Others are also likely possible.

1. MI(D;W |S = 1) ≤ MI(D;W )+MI(S;[D;W ])−MI(D;S)−MI(W ;S)
p(S=1)

2. MI(D;W |S = 1) ≤ MI(D;W )+MI(D;S|W )−MI(D;S)
p(S=1)

3. MI(D;W |S = 1) ≤ MI(D;W )+MI(W ;S|D)−MI(W ;S)
p(S=1)

4. MI(D;W |S = 1) ≤ MI(D;W )+MI(D;S|W )
p(S=1)

5. MI(D;W |S = 1) ≤ MI(D;W )+MI(W ;S|D)
p(S=1)

6. MI(D;W |S = 1) ≤ MI(D;W )+MI(S;[D;W ])
p(S=1)

It is important to note that these vary in the tightness of the bound. The first three bounds are all equivalent. But the
last three are not as tight, since these involve the exclusion of at least one term that is subtracted from the numerator of the
first three bounds. If W and D are marginally independent, then the term MI(D;W ) will be zero in all the bounds.

Interpretable bounds on R2
D∼W |S=1 and η2D∼W |S=1 We now combine Equation 16 with Equation 20 to get interpretable

bounds on R2
D∼W |S=1 and η2D∼W |S=1. We start by considering only one such bound. But others are possible.
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R2
D∼W |S=1 ≤ η2D∼W |S=1 = R2

D∼E[D|W,S=1]|S=1

= 1− exp (−2×Ω× IF×MI(D;E[D|W,S = 1]|S = 1)) since Ω =
− 1

2 log(1−R2
D∼E[D|W,S=1]|S=1)

IF×MI(D;E[D|W,S = 1]|S = 1)

≤ 1− exp (−2×Ω× IF×MI(W ;D|S = 1)) = NSMI(W ;D|S = 1) by the data processing inequality

≤ 1− exp

(
−2×Ω× IF× MI(D;W ) + MI(S; [D,W ])

p(S = 1)

)
by Eqn. 20

= 1− exp (−2×Ω× IF×MI(D;W )− 2×Ω× IF×MI(S; [D,W ]))
1

p(S=1)

= 1− (exp(−2×Ω× IF×MI(D;W )) exp(−2×Ω× IF×MI(S; [D,W ])))
1

p(S=1)

= 1− ([1− 1 + exp(−2×Ω× IF×MI(D;W ))][1− 1 + exp(−2×Ω× IF×MI(S;D,W ]))])
1

p(S=1)

= 1− ([1− (1− exp(−2×Ω× IF×MI(D;W )))][1− (1− exp(−2×Ω× IF×MI(S; [D,W ])))])
1

p(S=1)

= 1− ( [1−NSMI(D;W )][1−NSMI(S; [D,W ])] )
1

p(S=1)

(21)

Therefore, our first interpretable bound is captured by Equation 22.

R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ( [1−NSMI(D;W )][1−NSMI(S; [D,W ])] )

1
p(S=1) (22)

This bound is an expression of normalized scaled mutual information for the marginal mutual information between D and
W , for the mutual information between S and [D,W ] together, and the probability of selection, P (S = 1). As we saw in the
case of binary random variables and truncated normal random variables, we have an expression in terms of structural (i.e.,
causal) relationships between the variables in the full population. In Figure 10, we show how the bound in Equation 22 changes
for different values of NSMI(S; [D,W ]) and p(S = 1). For this, we assume that that W,D are marginally independent and so
NSMI(D;W ) = 0 and the bound becomes B

∆
= 1− (1−NSMI(S; [D,W ]))

1
p(S=1) . As p(S = 1) → 1, B → NSMI(S; [D,W ]).

As p(S = 1)→ 0, B → 1. As NSMI(S; [D,W ])→ 1, B → 1. As NSMI(S; [D,W ])→ 0, B → 0. These dynamics are easy to
see in the expression for the bound itself. They reflect the bounds on MI(W ;D|S = 1) that we then scale and normalize.
It is worth noting that this bound is not always informative (i.e., smaller than 1); small probabilities of selection can lead
to high bounds, regardless of the value for NSMI(S; [D,W ]). This reflects that, when the selection probability is small,
NSMI(S; [D,W ]) carries much less information about the stratum S = 1 than it does the stratum S = 0.

Following a similar approach as we did in obtaining the bound in Equation 22, we arrive at Theorem 2.

Theorem 2. For random variables D,W,S, for which S is a collider on a path from D to W in G+
S that, if conditioned on,

could alter the relationship between D and W (e.g., D → S ←W ), the R2
D∼W |S=1 and η2D∼W |S=1 resulting after stratification

to S = 1 can be bounded in the following ways:

1. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(S;[D,W ])]

[1−NSMI(S;D)][1−NSMI(S;W )]

) 1
p(S=1)

2. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(D;S|W )]

[1−NSMI(S;D)]

) 1
p(S=1)

3. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1−

(
[1−NSMI(D;W )][1−NSMI(W ;S|D)]

[1−NSMI(S;W )]

) 1
p(S=1)

4. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1−NSMI(D;W )][1−NSMI(D;S|W )])

1
p(S=1)

5. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1−NSMI(D;W )][1−NSMI(W ;S|D)])

1
p(S=1)

6. R2
D∼W |S=1 ≤ η2D∼W |S=1 ≤ 1− ([1−NSMI(D;W )][1−NSMI(S; [D,W ])])

1
p(S=1)

Bounds 1 through 3 in Theorem 2 are tighter than bounds 4 through 6, but require additional sensitivity parameters as
well as some knowledge about how mutual information works. That is, since some of the NSMI quantities are related in the
bounds in Theorem 2, users need to take care to reason about coherent combinations of the NSMI quantities. In particular,
the bounds all take the form 1− (τ)

1
p(S=1) but with different τ ; τ must take a value between 0 and 1. This reflects the fact

that 1− (1−NSMI(W ;D|S))
1

p(S=1) equals bounds 1 through 3 and NSMI(W ;D|S) takes values between 0 and 1. This, in
turn, reflects that MI(D;W |S) = MI(D;W )+MI(S; [D,W ])−MI(S;D)−MI(S;W ) ≥ 0. For this reason, we encourage users
unfamiliar with mutual information to use bounds 4 through 6, where the condition that τ ∈ [0, 1] will always be satisfied
given NSMI values between 0 and 1. If W and D are assumed to be marginally independent, then NSMI(D;W ) = 0 and
this term can be removed from the bounds. Which bound is most useful depends on the relationships that practitioners feel
comfortable reasoning about in terms of NSMI’s.
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Figure 10: Bounds (from Equation 22) on R2
D∼W |S=1 and η2D∼W |S=1 given values for NSMI(S; [D,W ]) and p(S = 1) and

assuming NSMI(D;W ) = 0

Incorporating Covariates It is also fairly straightforward to incorporate covariates, X. We now turn to bounding
R2

D∼W |X,S=1 and η2D∼W |X,S=1. The approach is very similar to the above. Equation 23 follows from the usual expressions of
R2

D∼W |X,S=1 and η2D∼W |X,S=1 and the fact that R2
D∼W,X|S=1 ≤ η2D∼W,X|S=1.

28

R2
D∼W |X,S=1 =

R2
D∼W,X|S=1 −R2

D∼X|S=1

1−R2
D∼X|S=1

≤
η2D∼W,X|S=1 −R2

D∼X|S=1

1−R2
D∼X|S=1

η2D∼W |X,S=1 =
η2D∼W,X|S=1 − η2D∼X|S=1

1− η2D∼X|S=1

(23)

We can estimate R2
D∼X|S=1 and η2D∼X|S=1 in Equation 23 from the selected sample, since neither involves W . Since both

portions of Equation 23 are expressions of things we can estimate from the data and η2D∼W,X|S=1, we now turn to bounding
η2D∼W,X|S=1 in Equation 24. Note that, as in the above discussion, Ω should take values less than or equal to 1. So we could
chose to omit it and simply reason about the L-measure as a bound. See the above discussion.

η2D∼W,X|S=1 = 1− exp(−2×Ω× IF×MI(D; [W,X]|S = 1)) where Ω =
− 1

2 log(1− η2D∼W,X|S=1)

IF×MI(D; [W,X]|S = 1)
(24)

From Equation 24, we have two options for how to proceed. First, we could use Theorem 1 with W replaced with [W,X]
to arrive at Equation 25.

MI(D; [W,X]|S = 1) ≤ MI(D; [W,X]|S)
p(S = 1)

=
MI(D; [W,X]) + MI(S; [D,W,X])−MI(D;S)−MI([W,X];S)

p(S = 1)
(25)

Using Equations 24 and 25 we arrive at Equation 26.
28We are not able to directly link R2

D∼W |X,S=1
and η2

D∼W |X,S=1
as we did the versions that did not include X. If X has a very non-linear

relationship with D and/or W , then it is not clear how R2
D∼W |X,S=1

and η2
D∼W |X,S=1

relate. In this discussion, we simply bound them separately.
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η2D∼W,X|S=1 = 1− exp(−2×Ω× IF×MI(D; [W,X]|S = 1))

≤ 1− exp

(
−2×Ω× IF×

[
MI(D; [W,X]) + MI(S; [D,W,X])−MI(D;S)−MI([W,X];S)

p(S = 1)

])
= 1− exp (−2×Ω× IF× [MI(D; [W,X]) + MI(S; [D,W,X])−MI(D;S)−MI([W,X];S)])

1
p(S=1)

= 1−
[
exp(−2×Ω× IF×MI(D; [W,X])) exp(−2×Ω× IF×MI(S; [D,W,X]))

exp(−2×Ω× IF×MI(D;S)) exp(−2×Ω× IF×MI([W,X];S))

] 1
p(S=1)

= 1−
[
[1−NSMI(D; [W,X])][1−NSMI(S; [D,W,X])]

[1−NSMI(D;S)][1−NSMI([W,X];S)]

] 1
p(S=1)

(26)

Second, we could use Theorem 1 with everything conditioned on X and the fact that MI(D;W |X,S) = p(S =
1)MI(D;W |X,S = 1) + p(S = 0)MI(D;W |X,S = 0) to arrive at the second equation in Equation 27. The first equa-
tion in Equation 27 just comes from the definition of MI(D; [W,X]|S = 1).

MI(D; [W,X]|S = 1) = MI(D;X|S = 1) + MI(D;W |X,S = 1) and

MI(D;W |X,S = 1) ≤ MI(D;W |X,S)

p(S = 1)
=

MI(D;W |X) + MI(S; [D,W ]|X)−MI(D;S|X)−MI(W ;S|X)

p(S = 1)

(27)

Using Equations 24 and 27 we arrive at Equation 28.

η2D∼W,X|S=1 = 1− exp(−2×Ω× IF×MI(D; [W,X]|S = 1))

= 1− exp (−2×Ω× IF× [MI(D;X|S = 1) + MI(D;W |X,S = 1)])

≤ 1− exp

(
−2×Ω× IF×

[
MI(D;X|S = 1) +

MI(D;W |X) + MI(S; [D,W ]|X)−MI(D;S|X)−MI(W ;S|X)

p(S = 1)

])
= 1− exp (−2×Ω× IF×MI(D;X|S = 1))

× exp

(
−2×Ω× IF× MI(D;W |X) + MI(S; [D,W ]|X)−MI(D;S|X)−MI(W ;S|X)

p(S = 1)

)
= 1− exp (−2×Ω× IF×MI(D;X|S = 1))

× exp (−2×Ω× IF× [MI(D;W |X) + MI(S; [D,W ]|X)−MI(D;S|X)−MI(W ;S|X)])
1

p(S=1)

= 1− exp (−2×Ω× IF×MI(D;X|S = 1))

×
[
exp(−2×Ω× IF×MI(D;W |X)) exp(−2×Ω× IF×MI(S; [D,W ]|X))

exp(−2×Ω× IF×MI(D;S|X)) exp(−2×Ω× IF×MI(W ;S|X))

] 1
p(S=1)

= 1− [1−NSMI(D;X|S = 1)]

[
[1−NSMI(D;W |X)][1−NSMI(S; [D,W ]|X)]

[1−NSMI(D;S|X)][1−NSMI(W ;S|X)]

] 1
p(S=1)

(28)
Equations 23, 26, and 28 combine to provide the following bounds on R2

D∼W |X,S=1 and η2D∼W |X,S=1. As before, which
bound is most useful depends on what the researcher is most comfortable reasoning about.

Theorem 3. For random variables D,W,S,X, for which S is a collider on a path from D to W in G+
S that, if conditioned

on, could alter the relationship between D and W (e.g., D → S ← W ), the R2
D∼W |X,S=1 and η2D∼W |X,S=1 resulting after

stratification to S = 1 can be bounded in the following ways:

1. R2
D∼W |X,S=1 ≤

1
1−R2

D∼X|S=1

×
(
1−

[
[1−NSMI(D;[W,X])][1−NSMI(S;[D,W,X])]

[1−NSMI(D;S)][1−NSMI([W,X];S)]

] 1
p(S=1) −R2

D∼X|S=1

)
2. R2

D∼W |X,S=1 ≤
1

1−R2
D∼X|S=1

×
(
1− [1−NSMI(D;X|S = 1)]

[
[1−NSMI(D;W |X)][1−NSMI(S;[D,W ]|X)]

[1−NSMI(D;S|X)][1−NSMI(W ;S|X)]

] 1
p(S=1) −R2

D∼X|S=1

)
3. η2D∼W |X,S=1 ≤

1
1−η2

D∼X|S=1

×
(
1−

[
[1−NSMI(D;[W,X])][1−NSMI(S;[D,W,X])]

[1−NSMI(D;S)][1−NSMI([W,X];S)]

] 1
p(S=1) − η2D∼X|S=1

)
4. η2D∼W |X,S=1 ≤

1
1−η2

D∼X|S=1

×
(
1− [1−NSMI(D;X|S = 1)]

[
[1−NSMI(D;W |X)][1−NSMI(S;[D,W ]|X)]

[1−NSMI(D;S|X)][1−NSMI(W ;S|X)]

] 1
p(S=1) − η2D∼X|S=1

)
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where R2
D∼X|S=1 or η2D∼X|S=1 is estimated from the data. We can approximate or inform the choice of NSMI(D;X|S = 1)

using the estimated R2
D∼X|S=1 or η2D∼X|S=1.

29 These bounds are all analogous to bound 1 in Theorem 2. Analogs to bounds 2
- 6 in Theorem 2 could also be formed.

29We cannot directly estimate NSMI(D;X|S = 1), since we cannot estimate Ω or IF which are based on η2
D∼W,X|S=1

and MI(D; [W,X]|S = 1).
See Appendix for discussion of Ω and IF.
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