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Abstract

Researchers often seek to estimate the effect of a treatment on an outcome within a sample that has
been drawn in some selective way from a larger population. Such selective sampling not only changes
the population about which we make inferences, but can bias our estimate of the causal effect for the
units in the sample, thus threatening the “internal validity” of the estimate Campbell (1957). Further,
it is not possible to know what the causal effect would be in any other population of eventual interest if
we cannot first obtain an unbiased estimate in the observed sample—a result we formalize below. That
selective sampling can threaten even internal validity has long been known, and over the decades different
research traditions have offered guidelines for assessing the threats to internal validity posed by sample
selection. We employ formal graphical tools for causal reasoning to more fully and rigorously characterize
the (i) the settings in which selective sampling does and does not bias the “internal effect estimate”, and
(ii) the conditions under which this bias can theoretically be corrected, and how to do so. These results are
collectively conveyed through a graphical criterion that investigators can apply in their circumstances to
examine the threats to bias and opportunities for correction given a graphical causal model. A number of
common lessons emerge, including that many forms of selection, including selection processes influenced
by the treatment or a mediator, are not always problematic. That said, the central lesson is that many
complications may arise, requiring the researcher to to use these tools to examine how selection processes
bias the result or can be corrected under specific causal structures the user cannot reject as plausible.

1 Introduction

In applied quantitative research, we typically estimate quantities of interest using samples of data drawn in
non-random ways from the population of eventual scientific or policy interest. Where we are interested in
learning the causal effect of one thing (D) on another (Y ), this can create two types of problems. One problem
involves external validity (Campbell, 1957): how might the effect of interest look when averaged over some
population of interest, as compared to its average in our sample? This is an important question which has
achieved considerable recent attention (for a recent review and development, see Egami and Hartman (2022)).
While investigators are accustomed to obviating this problem by restricting their inferences to the observed
sample, the second and more pernicious problem is that selective sampling can threaten even internal validity,
biasing our estimate of the treatment effect as defined as an average over the sample. This has long been
known. For example, Berk (1983) states, that under selective sampling, “Both internal and external validity
are implicated. There is no escape by limiting one’s causal conclusions to the population from which the
nonrandom sample was drawn (or even the sample itself).”
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Notwithstanding increased recent attention to external validity through a rapidly advancing literature
on “transportation” and “generalization” (e.g., Pearl and Bareinboim (2011); Pearl (2015b); Bareinboim and
Pearl (2016); Correa et al. (2018, 2019); Egami and Hartman (2021)), internal validity remains a key concern
for investigators for two reasons. First, internal validity may reasonably be of sufficient scientific interest in
many settings. For example, we may study a causal mechanism that is thought to be approximately the same
in most or all individuals or populations thereof. Or, we may design a study so that the sample in hand is
already representative of a sufficiently interesting target group, e.g. those who would be eligible for a new
policy or therapeutic intervention. Second, even where ultimate interest lies in a claim of generalization to
some broader or different population, we formally show how internal validity is always required for (and easier
to achieve than) external validity: identification of internally valid causal effects invokes a subset of the causal
assumptions invoked for identification of causal effect estimates that generalize from the sample.1

What detailed knowledge must investigators have to avoid or remedy these biases? What types of selection
processes are problematic and what types are not? Can the internal validity of randomized experiments
be threatened by sample selection? Where there are threats, under what conditions can they be remedied
and how? Methodologists in a variety of disciplines have long sought to address these perennial questions,
providing careful examinations, guidelines, and methodological fixes since at least Campbell (1957), with
well-known later contributions in Greenland (1977), Heckman (1979), Berk (1983), Hernán et al. (2004), and
Elwert and Winship (2014), among others. However, these approaches do not amount to a comprehensive
and rigorous treatment of the problem, nor have they resulted in an approach that a researcher can apply to
reveal any problem or solution that exists for any causal structure they deem plausible in their setting. As
noted by Berk (1983), “while considerable effort has been devoted to documenting sampling biases within
traditional survey sample approaches...we are a very long way from a formal theory.”

Fortunately, we are now in a position to answer Berk’s 1983 call for such a formal theory, and indeed
to provide a procedure for answering such questions as they apply to any causal structure. In recent years,
researchers have benefited from the growth and formalization of methods that rigorously define causal
quantities, characterize when they can or cannot be estimated from the data, and point to solutions for
correcting biases, employing the devices of potential outcomes, structural causal models, and graphical causal
models.2 With these tools comes the possibility of more completely and rigorously posing and answering
questions about sample selection and internal validity. In particular, we develop a graphical approach to
understanding the threats such sample selection can pose for internally valid causal effect estimates. This
involves first introducing “internal selection graphs”, an extension of standard graphical approaches that
visually shows the consequences of sample selection for the relationships between variables. Second, we provide
rules for how to use these extended graphs to determine when causal quantities are identifiable under selective

1While we offer a formalization of these claims, we do so to add rigor to statements that have long been made. For example,
Campbell (1957) states that “Internal validity is the prior and indispensable consideration”, and Campbell and Stanley (1963)
argue that “Internal validity is the basic minimum without which any experiment is uninterpretable...” Shadish et al. (2002)
clarify that the primacy of internal validity is specific to “cause-probing research,” which is the context of our paper. Additionally,
any claim of internal validity entails some conception of the population from which the sample was drawn. Without this, we
cannot begin to analyze whether the sample selection mechanism threatens our ability to draw causal inferences for the selected
sample, since the selection must be from some population.

2While we direct readers to texts such as Pearl (1988, 2009); Imbens and Rubin (2015); Hernán and Robins (2020) for a fuller
review of these concepts, our goal is to explain our use of these tools as they arise so as to provide a mostly self-contained guide
to users.
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sampling. These tools aim to provide a wider audience with the ability to analyze how sample selection
might threaten internal validity in their applications. Applied to a number of common causal structures,
our tools support a few broad findings of note, including: (i) sample selection is not always problematic to
internal validity (e.g., post-treatment selection, or confounders of selection and the outcome (Hernán, 2017)
are not biasing on their own), (ii) some causal effects can still be identified when sample selection is based
on a mediator,3 (iii) sample selection can influence the identification of causal effects even when it is not a
collider, and (iv) the threats from sample selection for internal validity are not the same as those for external
validity, nor are the means of addressing those threats. While communicating those broad conclusions helps
to signal the complexity and possibly non-intuitive nature of this problem, our key message echoing Berk,
1983 and Greenland, 2022, is that for any specific application, the details of the causal structure and sample
selection mechanism determine whether sample selection threatens internal validity and what might be done
about it. Our primary contribution is thus the graphical criterion we provide that enables investigators to
reliably perform such diagnostic and prescriptive analyses in their setting.

2 Working example: Racial bias in policing

For concreteness, we employ a single working example throughout the paper.4 Inspired by Knox et al. (2020),
we look to data from police “stops” (an encounter in which a police officer stops and interacts with a civilian, on
foot or in a vehicle). The question is then what can be learned from such data about how the police-perceived
race of the civilian stopped alters the chances that police employ force in that encounter. The emphasis on
police-perceived race is important for two reasons. First, it reminds us of the possible misperception and
conceptual ambiguity regarding the police officer’s belief about the civilian, as opposed to how the civilian
would identify. Second, it reminds us that we are interested in the question of how the police officer’s belief
regarding the civilian’s race might have influenced the outcome.5

The key challenge we consider here is that the data are limited to administrative records that are produced
only when the police officer stops a civilian, thus making a report, citation, or arrest that appears in the
data. Hence, such studies are restricted to a sample of civilian-police encounters that has been selected in a
non-random way, as the encounters in which the officers stop the civilian depends greatly on characteristics of
the encounter (in particular on characteristics of the officer and the civilian).

To begin addressing this, we must first be willing to contemplate the causal structure of the system in
question, meaning that we consider how each variable in this system could cause or be caused by other
observed variables, or by a web of unobserved variables that influence more than one observable. Here we
assume it is possible that police-perceived race influences the ways in which the officers interact with the
civilian, both through whether or not the officers make a stop and whether or not the officers use force.
Second, police stopping a civilian is a prerequisite to police use of force; if no stop is made, then officers

3Mediators are nodes in causal graphs the lie on at least one causal path from the treatment to the outcome. See below for a
discussion of causal graphs and paths.

4Appendix A offers additional illuminating—and perhaps entertaining—exercises which the reader can use to test and develop
their understanding. These include understanding why taller NBA players are worse free-throw shooters, whether imagining
applying eyeliner helps one lose weight, seeing if doing more can feel like less, and more.

5For additional discussion of perceived race and racism in causal studies see Robinson and Bailey (2019); Khazanchi et al.
(2020); Lett et al. (2022).
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cannot use force. Third, the police administrative records do not capture all of the factors that influence
whether or not officers make a stop and/or use force; that is, there are unobserved common causes of making
a stop and of using force. These possible relationships are represented in the usual causal graphical form
(that is, as a directed acyclic graph (DAG)) in Figure 1(a), which mimics Knox et al. (2020) Figure 1.6 Here
D represents an indicator for police–civilian encounters involving a civilian that was perceived to be from a
minority ethnic group, S represents an indicator for police–civilian encounters in which the police make a
stop, Y is an indicator for police use of force, and U are the unobserved common causes of making a stop and
use of force.

Figure 1: Racial Discrimination in the Use of Force by Police

Perception of Race (D) Use of Force (Y )Stop Made (S)

Unobserved Factors (U)

(a) Proposed directed acyclic graph (DAG)

Perception of Race (D) Use of Force (Y )S

Unobserved Factors (U)

(b) Extended DAG revealing “bridge” formed by selection

This causal structure immediately points to a number of familiar problems. We use Figure 1(b) to annotate
the original DAG in ways that make these problems apparent. First, and central to this project, we are forced
to “select” data for which a stop occurred (S = 1), and this stop is a mediator between perceived ethnicity (D)
and the use of force (Y ). This coniditioning on S is represented by the circle around S in Figure 1(b), and it
has two immediate consequences. First, because some of the effect of D flows through S to Y , conditioning on
S in this way blocks some of the effect we wish to study, leaving only the part of the effect that flowed directly
from D to Y as estimable. Second, by conditioning on S = 1, we are conditioning on a “collider” or a common
consequence of D and U .7 Conditioning on a collider (or a descendant8 of a collider) can create purely
statistical associations between the parents of the collider. We can represent this purely statistical association

6For those unaccustomed to relying on DAGs, we note that it is important that the user include on such a DAG any arrow
that could exist, meaning that to leave out an arrow requires a strong argument for why no such arrow exists. The requirement
that such a causal structure be assumed at this level of detail may seem like a drawback. However, it asks little more than what
is absolutely necessary to draw conclusions about how selection impacts the result and what can be done about it indeed depends
on the causal structure at this level of detail. An unwillingness to transparently state what causal structure the researcher
believes to be plausible would not free us from the consequences of that structure, only blind us to the possible problems and
solutions associated with that structure.

7A collider is a node in the graph into which two arrows point: D → S ← U . See Pearl (2009) for an introduction to causal
graphical models and colliders.

8We do not consider a node to be a descendant of itself. See Definition B.9 in Appendix B.
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with a dashed undirected edge D U on Figure 1 (b). This leads to additional problems. For example, by
generating an association between D and U , the pathway D U → Y now generates an assocation between
D and Y that is not due to the effect of D on Y . Thus, a comparison of the rates of use of force across values
for (perceived) civilian race will be biased for the total effect and direct effect even for encounters in which a
stop was made (the selected sample). Knox et al. (2020) agree with these conclusions but use other tools to
reach them.

We note that conditioning on a collider does not always create an association among its parents nodes, as
there are a number of counterexamples. These counterexamples often impose strong or knife-edge assumptions
and cannot easily be defended, but in other cases they are plausible. In Section B.6 of Appendix B, we discuss
conditions under which marginally independent parents of a collider maintain their independence conditional
on the collider for discrete variables and the implausible circumstances under which no association would be
created between D and U conditional on S = 1 in the present example. In Section B.7 of Appendix B, we
show that zero “interaction information” implies that marginally independent parents of a collider maintain
their independence conditional on the collider. Because conditioning on a collider can and often will create an
association among the parents, we proceed as though it does to maintain a more conservative analysis.

Finally, an important feature of these scenarios is to be clear and explicit about the causal estimand we
are aiming to identify and estimate. In plain language, we are interested in “the effect of perceived race on
use-of-force”, specifically among (averaged over) those cases where a stop occurred. This description, however,
is ambiguous regarding which counterfactuals we mean to compare. Specifically we could be referring to two
different quantities:

• The direct effect, among those who were stopped. Once a stop is made, how does perceived race
influence the risk that force is used? This considers an individual i for whom a stop was actually made,
and compares whether force would have been used had they been perceived to be of one race (Di = d)
or another (Di = d′).

• The total effect, among those who were stopped considers the “the effect of perceived race
through triggering a stop that might not have otherwise occurred”, as well as the direct effect above
that applies “once a stop occurs”. Consider an individual i with perceived race Di = d, for whom a
stop really did occur (Si = 1). For this individual, had they been perceived to be of a different race
(Di = d′), a stop may or may not have still occurred, and force may or may not have been used. We
are interested in the outcome (use-of-force) for this individual, had we changed their perceived race,
recognizing that doing so might also have changed whether a stop would have occurred. The average
total effect among those who were stopped — or more generically the (average) “internal total effect” —
is be composed of such counterfactual comparisons for all units i that were, in the real data, actually
subject to a stop (without manipulation of their perceived race).9

9Describing these quantities in terms of the “ideal” or “target” randomized trials can be a useful exercise, in part for the gap it
may reveal between causal quantities and what can straightforwardly be learned by experimentation. For the “total effect,” we
must be able to randomly manipulate the perceived race of the civilian at the beginning of the encounter (before the officer
decides whether to make a stop). Yet, to limit our inference to the individuals who would have been stopped, we must have a
way of recording whether, when the officer perceived the race as they would have without intervention, they would have made a
stop. Such an experiment would require a time-travel or memory-wiping mechanism, or the ability to monitor “two worlds” (one
with the natural perceived race, one with the counterfactual). For the direct effect, the manipulation in question comes later: we
wait and see if a stop is made, and only wipe the officer’s memory and randomly intervene on their perception of race when
they made a stop naturally. Alternatively we could intervene on perceived race prior to the encounter, determine when a stop
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3 Background

Notation and key quantities Let’s introduce some notation to clarify the types of casual effects we mean
when we say internally valid causal effects and causal quantities. A potential outcome, Yd[i], is the value that
the variable Y would have taken for unit i, if the variable D for unit i had been set, possibly counterfactually,
to the value d. (Splawa-Neyman et al., 1990; Rubin, 1974, 1978, 1990) The unit-level causal effect of setting
D to d relative to D to d′ is τi = Yd[i]− Yd′ [i].

The fundamental problem of causal inference, however, is that we are never able to observe more than one
of the potential outcomes for a given unit and so cannot calculate unit level causal effects. (Rubin, 1978;
Holland, 1986; Imbens and Rubin, 2015; Westreich et al., 2015) Despite this, these are often the building
blocks of typical causal inferential targets. When readers see “internally valid causal effects,” we suspect that
most have in mind something like the sample average treatment effect (SATE), 1

N

∑N
i=1 τi, which is the simple

average of the unit level effects across the units that are observed in the sample. This is a perfectly good
target causal effect and the discussion that follows will apply to this. However, researchers might also be
interested in the causal effect for the sub-population for which the selected sample is representative. We write
this as E[τi|Si = 1] and call it the selected-population average treatment effect (SPATE). We will use a binary
variable, S, to denote non-random sample selection. Si = 1 can be interpreted as indicating that a unit is
included in the observed study sample. It may also be thought of as indicating the subset of the population
from which the observed study sample was randomly drawn.10 Both the SATE and SPATE are different from
the population average treatment effect (PATE), E[τi].

SATE =
1

N

N∑
i=1

τi

SPATE = E[τi|Si = 1]

PATE = E[τi] = E[τi|Si = 1]p(Si = 1) + E[τi|Si = 0]p(Si = 0)

If we have a random sample from the population, E[SATE] = E[ 1N
∑N

i=1 τi] =
1
N

∑N
i=1 E[τi] = E[τi] = PATE.

However, in the more interesting case of a non-random sample from the population, we instead have
E[SATE|Si = 1] = E[ 1N

∑N
i=1 τi|Si = 1] = 1

N

∑N
i=1 E[τi|Si = 1] = E[τi|Si = 1] = SPATE ̸= PATE. In the

non-random sampling case, the SATE is unbiased for the SPATE, not the PATE, since the sample at hand
can be thought of as a representative sample of the sub-population indicated by S = 1.

This brings us to a more formal definition of internal validity: An estimation strategy is said to be

would have occurred for unit i under their naturally perceived race (keeping only individuals i for whom that is the case), and
then, when we set perceived race for each such individual i to its non-unobserved value, we must simultaneously force a stop to
occur, even if it would not have otherwise. Such interventions are clearly infeasible, which gives some researchers pause, whereas
others are satisfied to make such comparisons regardless, as they can be clearly defined by their counterfactuals and/or by the
structural causal model and DAG they reference.

10In a setting like our running example, police-civilian encounters in the study sample are selected based on whether or not the
police made a stop, which we represent with Si = 1. The specific set of encounters that we observe and are able to analyze may
not contain all encounters for which police made stops, however. Perhaps we only have a sample of such encounters - a random
sample or one based on geography, time, or other constraints. If we are willing to assume that these other constraints are not
material to the causal relationships between perceived race and use of force, then we might aim to estimate a causal effect for all
police-civilian encounters in which a stop was made. The fact that we only have a sample of all such encounters does not pose a
problem for causal identification of causal effects for the sub-population of encounters in which a stop was made. However, only
having a sample that contains encounters in which a stop was made may threaten our ability to identify such a causal effect.
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“internally valid” if it can unbiasedly or consistently estimate the SPATE. In what follows, we do not always
differentiate between units eligible to be in the selected sample from those specifically in the sample in
hand. Obtaining a valid estimate of a causal effect for the specific sample, we can then generalize this to the
subpopulation. So going forward, we often refer to just the units in the sample at hand, even if our target is
really the subpopulation. Other causal effects (i.e., not just means of τi) might be of interest as well, but in
what follows, we will focus on distributional primitives that allow for the identification of any causal effect.

Identification under conditional ignorability. Any internally valid causal effect can be written using
p(Yd|S = 1). For example, E[Yd − Yd′ |S = 1] =

∑
y × p(Yd = y|S = 1) −

∑
y × p(Yd′ = y|S = 1). Such

quantities can be identified under sufficiently strong assumptions, including that covariates Z are observed
such that in each stratum of Z in the selected population, treatment is ignorable, i.e. Yd ⊥⊥ D|Z, S = 1.11

p(Yd|S = 1) =
∑
z

p(Yd|Z = z, S = 1)p(Z = z|S = 1) by law of total probability

=
∑
z

p(Yd|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1) by consistency

Structural causal models and DAGs. The key practical concern is: how can we know if D and Yd

are in fact independent conditional on Z in the selected sub-population? It is simple to write a conditional
ignorability statement of this kind, and even to understand a hypothetical randomization scheme that would
justify such a choice. With observed data, however, supporting or defending such an assumption turns on
detailed claims about the underlying data generating process. To convincingly defend an assumption of
conditional ignorability is to convincingly argue that the data were generated from one of a class of “structural
causal models” that would produce such ignorability. Specifically, such a model must make claims as to how
the treatment and outcome causally relate to each other and relevant observed and unobserved covariates.
The key assumptions in these models often regard which variables do not influence other variables. Such
causal relationships can often be non-parametrically encoded in a structural causal model (SCM) which can be
represented graphically as a directed acyclic graph (and extensions thereof). See Pearl (2009) and Appendix
B for details on SCMs and DAGs. See Figure 2 for example DAGs. DAGs allow us to visualize dependencies
and independencies between variables. On a given DAG, a set of rules known as graphical criteria can then
be used to determine if ignorability holds under the sample selection mechanism implied by that DAG. In the
following section, we develop such a graphical criterion.

4 Proposal

Our set of tools for analyzing how sample selection can threaten internal validity begins with a method
for displaying the effects of sample selection graphically. Next, we present a formal graphical criterion for
determining whether internally valid causal effects are identifiable. Our proposed approach is similar to those
presented in Pearl (1995); Shpitser et al. (2010); Daniel et al. (2012); Correa et al. (2018), but emphasizes

11Here, we ignore problems of measurement bias, missingness, interference, and other wrinkles that are important in practice.
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the impact of sample selection for internal validity regardless of the role that sample selction takes in the
causal graph. We conclude this section by drawing connections with the generalizability results in Correa
et al. (2018) and with a discussion of sample selection based on mediators in more detail. It is important to
emphasize that we should have some population in mind from which the sample was selected. This will allow
us to attempt to non-parametrically model the sample selection process.12 As discussed above, we will use a
binary variable, S, to denote sample selection.

4.1 Showing selection: internal selection graphs

We will now detail our simple graphical approach to determining whether conditional ignorability of the form
Yd ⊥⊥ D|Z, S = 1 holds. The key is to graphically represent the ways in which sample selection alters the
relationships in the selected sample. We do this by defining internal selection graphs, which visually extend
traditional causal graphs to represent all the ways that sample selection can change relationships between
variables.13

Definition 1 (Internal Selection Graph, G+
S ). Let G be the DAG induced by a SCM.

1. Create GS by adding an appropriately connected binary selection node, S.
2. Draw a circle around S to clearly indicate that we must limit our analysis to S = 1.
3. Add to GS any node which is a parent of the treatment or a parent of a descendant of the treatment.

(US , the background factors contributing to selection, can be excluded.)
4. Add a dashed undirected edge between all variables between which S is a collider or an ancestor of S is

a collider. We will call these dashed, undirected edges bridges.
Call the resulting graph an internal selection graph, G+

S .
(This definition is similar to the “modified extended diagram” in Daniel et al. (2012).)

Let us dwell briefly on why we’ve chosen to denote sample selection with a separate binary selection node,
rather than conditioning on some variable already in the causal model. Consider a simple two node DAG,
D → Y , in which both variables are continuous and there is sample selection on the outcome. Suppose this
represents the effect of education (D) on income (Y ) in a simplified setting in which we assume no common
causes of education and income. (Elwert and Winship, 2014; Hausman and Wise, 1977) If we have a sample
that is filtered to units with a particular range of (low) incomes, then sample selection, S, is not identical
to income. There is still some variation in income, despite sample selection. As such, we should represent
sample selection as a child of income: Y → S. In other cases, like our running example related to the the
effect of racial discrimination on police use of force, selection may be equivalent to a binary variable in the
causal model (in our example sample selection is equivalent to police making a stop). In this case, we should
represent the binary variable as selection. There are also many settings in which sample selection is caused
by more than one variable and the binary representation can simplify things while also showing how such
variables can become related by selection. In cases when the binary selection variable is not equivalent to

12While having a population in mind is useful, “There is also the problem of infinite regress. Even if one has a random sample
from a defined population, that population is almost certainly a nonrandom subset from a more general population. ... In
principle, therefore, there exists an almost infinite regress for any dataset in which at some point sample selection bias becomes a
potential problem.” Berk (1983)

13See Appendix B for a brief discussion of why we do not use Single World Intervention Graphs. (Richardson and Robins,
2013a)
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another variable in the causal graph, selection may not eliminate all variation in that other variable. This
means that paths running through that variable may not be blocked by sample selection. Only paths that
run directly through variables equivalent to selection will be blocked. We are not the first to use a binary
selection variable in this way. See Bareinboim et al. (2014); Correa et al. (2018); Egami and Hartman (2021),
among others. We echo Greenland (2022) in the sentiment that “realistic causal diagrams should always have
a selection (sampling) indicator node S ... as a part of the data-generating process.”14

Figure 2: Examples of DAGs and Internal Selection Graphs

D Y S

(a.i.) DAG

D Y S

UD UY

(a.ii.) Internal Selection Graph

D Y

S

Z

(b.i.) DAG

D Y

S

Z

UD UY

(b.ii.) Internal Selection Graph

D YS

U

(c.i.) DAG

D YS

U

UYUD

(c.ii.) Internal Selection Graph

The key features of internal selection graphs151617 are the inclusion of an encircled sample selection node,
specific background variables,18 and bridges that capture the statistical associations that result from sample
selection. Bridges are created as a result of conditioning on a collider; this is also referred to as “collider
stratification”.19 These additions ensure sample selection and the changes it requires for identification are

14This sentiment is not new, though the graphical form may be. Berk (1983) states “When considering whether potential
sample selection bias is likely to be realized, the initial step is to formulate a theoretical model of the selection process. One
needs a theory of selection. Without a theory, it is difficult to draw even preliminary inferences about the nature of the problem
and impossible to choose how best to implement sample selection corrections.”

15Including US would lead to the direct parents of S to be associated with each other through US . But the direct parents of S
will already be associated with each other due to conditioning on selection itself. The associations between US and any direct
parents of S are otherwise immaterial to ignorability, making the inclusion of US unnecessary.

16Bridges are simply graphical representations of the purely statistical relationships that arise as a result of conditioning on a
collider. Here, we are forced to filter to S = 1; so when S is a collider, we are conditioning on a collider.

17The value of this sort of graph for evaluating sample selection can be seen in Elwert and Winship (2014); Schneider (2020),
papers that explore various types of selection bias in sociology and economic history. These papers, without stating a formal
approach for doing so, add bridge-like undirected edges to the graphs they use to illustrate issues related to sample selection, but
do not formally discuss how these non-causal edges can be incorporated into attempts to identify causal quantities, as we do in
this paper. Greenland et al. (1999) also discusses an approach in which undirected edges are added to the graph.

18Step three of the internal selection graph definition requires that we include additional nodes in our causal graph. This
means including background noise nodes for the treatment and all descendants of the treatment. As a result, these nodes are
entirely determined by their parents represented in the graph.

19Conditioning on a collider allows information to flow between the direct parents of the collider. This is the opposite of what
happens when we condition on other types of nodes, in which case conditioning “blocks” the flow of information along a path.
We can state these relationships as follows. Two sets of nodes, D,Y , in a graph G are said to be d-separated by a third set, Z, if
every path from any node D0 ∈ D to any node in Y0 ∈ Y is blocked. A path is blocked by Z if either [1] some W is a collider on
the path between D,Y and W ̸∈ Z and the descendants of W are not in Z or [2] W is not a collider on the path but W ∈ Z (see
e.g. Pearl, 2009, Chapter 1 for details).
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visualized in the graph and can be analyzed easily. See Figure 2 and Tables 1 - 4 for examples. Figure 2(c.ii.)
contains the internal selection graph for our working example. At first glance, it appears that the types of
sub-paths in internal selection graphs has expanded. We might wonder if the usual chains, forks, and colliders
are joined by additional sub paths containing bridges. But the new additions are just built up from the
old. The possible sub-paths incldue: chains (A → B → C), forks (A ← B → C), colliders (A → B ← C),
bridge chains (A B → C or A B ← C) and double bridges (A B C). A double bridge might result
from something like in Figure 3(a). A bridge chain might result from something like Figure 3(b,c,d,e). So
colliders are still defined only with respect to directed edges. Bridges cannot create colliders, since they are
really just graphical representations of purely statistical relationships created by sample selection.

Figure 3: New sub-paths are built from the old.

A S B

C

(a)

A S B C

(b)

A W

S

B C

(c)

A S B C

(d)

A W

S

B C

(e)

Next, we will differentiate between a few types of paths. Generalized paths are any sequence of nodes
and edges (directed edges and/or bridges) where each node appears only once (e.g., D Z → Y , D → Y ,
D → S ← Z, UD → D → Y ). Causal paths are any generalized path where all edges between the nodes are
directed and point in the same direction (e.g., D → Y , UD → D → Y ). Generalized non-causal paths are any
generalized path that isn’t a causal path (e.g., D Z → Y ).20

Consider again the two node example of education and income where the sample has been selected to
include only low income individuals. Figure 2(a) captures this. We do not assume that education explains
the entirety of the variation in income and add a separate selection node. We also add the UY background
noise term. Since S is a descendant of Y and Y is a collider between D and UY , there is a purely statistical
association created between D and UY . Therefore, there is a generalized non-causal path from D UY → Y

that will confound estimates of the effect of education on income, despite the fact that we assumed there were
no common causes between education and income in this simplified example. This is the simplest example
of the need to include such background terms in the analysis of how sample selection alters relationships
between variables in the sample. Let us also consider again our running example of racial discrimination’s
effect on police use of force for civilian-police encounters in which the police make a stop. This is described in
Figure 2(c). We see that the internal selection graph is essentially identical to the graph in Figure 1(b) but
with two additional background terms. In this example, the background terms do not play a role, but as
we’ve just seen they can play an important role in many cases. They are included here since internal selection
graphs are constructed so that all the ways that sample selection can alter relationships in the sample are
captured for any causal graph and sample selection mechanism.

20Following the above discussion, d-separation is defined in the same way for these paths as for regular paths, since colliders
are defined in the same way. See Appendix B, in particular, Corollary B.5 and Definition B.10 for details.
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4.2 Internal Selection Adjustment Criterion

How can we use internal selection graphs to determine whether conditional ignorability holds more generally?
Using the intuition of ruling out “alternative explanations” (other than the causal effect of interest) for why
the treatment and outcome covary, we want to leave the causal paths between the treatment and the outcome
that we hope to study untouched while removing any other systematic relationships between the treatment
and outcome that could provide an alternate explanation. That is, first, we don’t want to conditioning on
variables that are on causal paths we are interested in, since this would block some of the effect we want to
study. Second, we want to block any open generalized non-causal paths between the treatment and outcome.
These paths are not those we want to study and confound the causal paths that we do want to study. Third,
we don’t want to open any previously closed generalized non-causal paths between treatment and outcome as
a result of our covariate adjustment. (Pearl, 2009) Sample selection may block paths whether we would like
them blocked or not and may open previously closed paths. We formalize these intuitions as a set of rules
that fold in the effects of sample selection; we refer to them as the internal selection adjustment criterion.

Definition 2 (Internal Selection Adjustment Criterion (ISAC)). A set of nodes Z in G+
S satisfies the internal

selection adjustment criterion relative to D (treatment) and Y (outcome) if
1. No element of Z lies on or is a descendant of a node that lies on a causal path originating from D and

arriving at Y . Note that an element of Z could be a descendant of D itself, if it is not on a causal path
from D to Y . Note also that elements of Z should not be on, or descendants of nodes on, causal paths
even if S is also on the causal path.

2. Z blocks every generalized non-causal path between D and Y that does not pass through S. Note that
generalized non-causal paths passing through M , when S is a descendant of mediator M , on which M

is an ancestor of Y also do not need to be blocked, assuming the previous condition is not violated.
Further, M should not be a member of Z from the previous condition.

An important component of this criterion is that we do not need to worry about blocking paths on which
S appears. If S is a collider, we have already added bridges that circumvent S itself. If S is not a collider
but is on a path, it blocks the path.21 This also shows us that sample selection can alter relationships in the
sample, even when the sample selection node is not a collider. As in the case when the sample selection node
is a collider, we also need to take care to account for how it alters relationships when it is not a collider.

Our criterion builds on powerful, well-known, existing criteria like those presented in Pearl (1995); Shpitser
et al. (2010); Daniel et al. (2012); Correa et al. (2018). Using these building blocks, ISAC focuses us on what
is required to attain internal validity under non-random sample selection by relying on internal selection
graphs and allowing us to determine whether causal effects are identifiable under non-random sample selection,
regardless of the role that sample selection plays in the casual graph. See Section 5 for a more detailed
discussion. The following results use our internal selection adjustment criterion to show how to identify internal
causal quantities in the presence of sample selection and confounding, whether selection is post-treatment or

21When the sample selection node is on a generalized non-causal path but is not a collider, we do not need to consider blocking
this path with some additional node Z. Sample selection will already block this path. Further, the associations created when
sample selection is a collider are captured by the bridges that circumvent S. So we do not need to consider any path that
passes through S. When selection is the descendant of a mediator M , we will be working with potential outcomes for which we
intervene on M ; see below. This means that paths running through M on which M is an ancestor of Y will be blocked and since
we already condition on a descendant of M , parents of M will already be associated due to selection, when M is a collider.
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not. Recall that mediators are nodes that lie on at least one causal path from the treatment to the outcome.
Mediators are discussed further below.

Internal Validity Results. If a set of nodes Z in G+
S satisfies ISAC relative to D (treatment) and Y

(outcome) and
• S is not a mediator or descendant of a mediator between D and Y , then

– (ignorability) Yd ⊥⊥ D|Z, S = 1.
– (identification) We can identify p(Yd|S = 1) =

∑
z p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1).

• S is a mediator between D and Y (but S is not also a descendant of another mediator), then
– (ignorability) Yd,S=1 ⊥⊥ D|Z, S = 1.
– (identification) We can identify p(Yd,S=1|S = 1) =

∑
z p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1).

– (non-ignorability) For any set of observables, W , Yd ̸⊥⊥ D|W,S = 1 and Yd,Sd′ ̸⊥⊥ D|W,S = 1.

• S is a descendant of an observed mediator, M , between D and Y (but S is not also a mediator itself),
then

– (ignorability) Yd,m ⊥⊥ D|Z, S = 1 and Yd,m ⊥⊥M |D,Z, S = 1, where M = m is observed.
– (identification) We can identify

p(Yd,m|S = 1) =
∑

z p(Y |D = d,M = m,Z = z, S = 1)p(Z = z|S = 1).
– (non-ignorability) For any set of observables, W , Yd ̸⊥⊥ D|W,S = 1 and Yd,Md′ ̸⊥⊥ D|W,S = 1.

These results are proved in Appendix B in Theorems B.1, B.2, and B.3. Note that all of these identification
results equate internal causal quantities with expressions that are estimable from the selected sample alone.22

The first bullet can be used to identify “total effects”; the second and third bullets can be used to identify
“direct effects.” The above results show that sample selection can often be seen as an omitted variable
problem. Heckman (1979) discusses “the bias that results from using nonrandomly selected samples to
estimate behavioral relationships as an ordinary specification bias that arises because of a missing data
problem.” The idea is essentially that, cast in the right light, sample selection can be thought of as an omitted
variable or misspecification problem. Heckman’s discussion was in the context of a parametric framework and
he proposed a correction procedure in this context. Our results show that something similar is true when
we take the graphical, non-parametric view on sample selection as a threat to internal validity. When the
threat that sample selection poses to the internal validity of causal effect estimates of D (treatment) on Y

(outcome) can be overcome through adjustment on some covariates, Z, the problem of sample selection for
internal validity can be viewed as an omitted variable problem, when Z is unobserved. Future work will
explore omitted variable based sensitivity analysis for sample selection based on this remark.23 Before turning
to a discussion of direct effects and mediators, we first consider some connections to genereralizability.

22Estimation strategies that would apply to a covariate adjustment or conditional ignorability identification strategy will also
apply when we properly account for sample selection. In Section B.5 of Appendix B, we present a discussion of IPW estimation
of E[Yd|S = 1], E[Yd,S=1|S = 1], and E[Yd,m|S = 1]. This is meant to illustrate one example of how estimation might proceed for
internal causal effects. We also provide this discussion to demonstrate that estimation of “internal controlled direct effects” is
also straightforward.

23Indeed, the desire to conduct such a sensitivity analysis sparked the realization that a framework for determining how one
might overcome the threats to internal validity posed by sample selection was missing from the literature.
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4.3 Connections to generalizability

As previously discussed, researchers are often concerned with how a causal effect might look averaged over
some population of interest, as opposed to averaged over the sample at hand. When the sample is drawn from
the target population in some (random or non-random) way, we may hope to use information on the causal
effect available from the sample to generalize to a statement about the causal effect in the population.24

Generalizability in this sense is a form of external validity. We will show that internal validity is more
permissive than generalization, by which we mean the causal assumptions invoked to identify (and the
observed data required to estimate) internally valid causal effects are a subset of those invoked for causal
effect estimates that generalize from the sample. In doing so, we formalize what Campbell and Stanley (1963)
first claimed with respect to experiments for approaches using covariate adjustment: “Internal validity is the
basic minimum without which any experiment is uninterpretable...”2526 We illustrate this in more formal
terms using graphical criteria; we limit our discussion to causal quantities containing potential outcomes of
the form Yd for simplicity.

Definition 3 (Generalization Criterion (GC)). A set of nodes Z in G+
S satisfies the generalization criterion

relative to D (treatment) and Y (outcome) if
• Z satisfies ISAC relative to D and Y and
• ZExt ⊂ Z blocks all causal and generalized non-causal paths between Y and S in G+

S other than those
that end in a causal path from D to Y .

This definition is a translation of Definition 8 from Correa et al. (2018).

Generalization Results. If a set of nodes Z in G+
S satisfies GC relative to D (treatment) and Y (outcome)

and S is not a mediator or descendant of a mediator between D and Y , then
• (ignorability) Yd ⊥⊥ D|Z, S = 1 and Yd ⊥⊥ S|ZExt.
• (identification) We can identify p(Yd) =

∑
z p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S =

1)p(ZExt = zExt), where ZInt = Z − ZExt.
This translates Definition 7 and Theorem 1 in Correa et al. (2018) to use potential outcomes.

The causal assumptions invoked by ISAC to identify p(Yd|S = 1) are a subset of those invoked by GC to
identify p(Yd) using covariate adjustment. Further, we can estimate p(Yd|S = 1) with observed data from the

24In this section, we discussion connections between our results and recent results addressing generalization (Correa et al.,
2018). This is a distinct but related to the problem of transportability. See Bareinboim and Pearl (2016) for a discussion of the
differences between generalization and transportability. We are considering a single SCM. In many interesting observational
settings, the same SCM might not hold across all settings of interest. For example, there may be a reason why, at the particular
hospital we have data from, the SCM we are evaluating holds and further that we can sustain related ignorability statements
or satisfy graphical criteria related to this SCM, but the SCM might be different at other hospitals. Often we have to be
identification opportunists, looking for someplace that the treatment was assigned in some way that is conducive to identification,
but those mechanisms (SCM) may not hold elsewhere. You might be able to extend to a larger population in which the same
SCM holds, but not to a population in which the SCM does not hold. When considering external validity, you have to have a
specific target population in mind; and here we’re talking about external validity for the population in which the same SCM
holds; i.e., generalization not transportation.

25Shadish et al. (2002) clarify that the special role of internal validity is specific to “cause-probing research”, as we are discussing
here, but not all forms of research.

26An alternative version of this idea can be stated as follows. If observed covariates and data limited to the selected sample
(S = 1) are insufficient identify p(Yd|S = 1), then they will also be insufficient to identify p(Yd) = p(Yd|S = 1)p(S = 1)+p(Yd|S =
0)p(S = 0), since p(Yd) extends beyond the selected sample which is all we have information about. We show this within the
context of graphical criteria in this section.
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selected sample for Y,D,Z alone. On the other hand, p(Yd) can be estimated with observed data from the full
population on ZExt in addition to data from the selected sample for Y,D,Z. In this way, we have formalized
that generalization “costs more” in terms of both causal assumptions and observed data. These generalization
results are proved in Appendix B; see Theorem B.4. Additional connections are also shown in Lemma B.24.27

Let’s explore some examples and discuss how identifiability can differ for internal and external validity.
First, let’s consider our running example of racial discrimination in policing in which we are interested in the
effect of perceived civilian race on police use of force in which we have data only on civilian-police encounters
in which the police made a stop. The internal selection graph for this can be found in Figure 2(c.ii.). We
immediately see that there is no hope for generalizing: since S is a direct cause of Y there is no hope of
satisfying GC, regardless of the choice of ZExt. Further, we only have access to data for police-civilian
encounters in which the police made a stop, so we do not have any data for the full population. But do we
satisfy the internal selection adjustment criterion? Well, as we saw before, no we don’t. This is because of the
generalized non-causal path from D U → Y , which violates ISAC. So no total or direct effect is identifiable.
We will discuss this example more in the next section.

Next let’s consider Figure 4(a), which we will just consider in the abstract. Here there is a common cause
of sample selection and the outcome, but the two are not directly associated and sample selection is not a
collider. Let’s consider internal validity first. Suppose we choose not to condition on any covariates. We
easily see that we satisfy ISAC. This means that we are indeed able to identify internal causal quantities
without any covariate adjustment. We also only need data from the selected sample to estimate effects for the
selected sample. What about identifying external causal quantities? We see that letting Z = ZExt means
that we satisfy GC. So we can identify external causal quantities. However, since we need to adjust for Z, we
could only estimate generalized effects so long as we have data for Z for the full population. Finally, Figure
4(b) is similar to Figure 4(a), but it turns out that we can identify internal causal quantities adjusting for
W or Z or both. Estimation would only require data on one of these for the selected sample. However, to
identify external causal quantities we must adjust for Z (or Z and W ). Estimation would require data on Z

for the full population, data for the selected sample alone is insufficient, as is data only on W , even if it is for
the entire population.

Figure 4: Examples for comparison of ISAC and GC.
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27See Correa et al. (2018) for an IPW estimator for generalization.
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4.4 Sample Selection based on a mediator

In this section, we return to potential outcomes of the the form Yd,S=1 and Yd,m, which allow us to consider
particular types of direct effects called “controlled direct effects.” Above we saw that, when sample selection
plays the role of a mediator or the descendant of a mediator and we satisfy ISAC, we can identify p(Yd,S=1|S = 1)

or p(Yd,m|S = 1), respectively. Identifying these internal causal quantities allows us to identify what we call
“internal controlled direct effects,” which are defined below. But what are these strange looking effects?

Definition 4 (Internal Controlled Direct Effects (ICDEs)). Define E[YD=d,S=1 − YD=d′,S=1|S = 1] and
E[YD=d,M=m − YD=d′,M=m|S = 1] to be the internal controlled direct effect when selection is a mediator
between D and Y and when selection is a descendant of a mediator, M , between D and Y , respectively.

In mediation analysis, we have a treatment D, a mediator M , and an outcome Y , in addition to other
relevant covariates. There are two possible paths along which the treatment might effect the outcome. First
is the familiar direct path: D → Y . Second is the indirect path: D → M → Y . This set up follows the
mediation discussion from Baron and Kenny (1986). For our purposes, we consider the settings in which the
sample selection node is itself a mediator between D and Y 28 or is a descendant of a mediator between D

and Y . There are a variety of causal effects to consider when considering mediation, including total effects,
controlled direct effects, natural direct effects, and natural indirect effects (Robins and Greenland, 1992;
Pearl, 2001; VanderWeele, 2011; VanderWeele and Vansteelandt, 2009; Richiardi et al., 2013). In both of our
settings, a causal path between D and Y is blocked or partially blocked as a result of sample selection. This
means that total effects, like E[Yd − Yd′ |S = 1], which capture all causal paths along which the treatment D

can effect the outcome Y , are not identifiable. The indirect effect of D on Y that runs along the path on
which S lies or is a descendant will also not be identifiable. Only the causal paths D → Y that do not relate
to S remain unaltered. Are we able to identify the direct effects that run along these unaltered paths?

In our present discussion, we are limited to the study sample. So the type of causal effects that we are able
to identify when sample selection is a mediator or descendant of a mediator will still be for the selected sample
alone. We are therefore interested in direct effects for the selected sample. ICDEs are just this sort of effect:
direct effects averaged over the units in the selected sample. ICDEs are distinct from CDEs for the entire
population and are also distinct from total effects for the selected sample. Instead, ICDEs compare setting
D = d with setting D = d′, while also setting M to m (or S to 1) for both versions of treatment interventions,
for units in the selected study sample. To understand ICDEs better, let’s return to our working example. First,
we note that total effects cannot be identified since sample selection (police making a stop) is a mediator
blocking one of the causal paths between the treatment (police perception of race) and outcome (police use of
force). But we might consider an ICDE as a possible effect of interest. The ICDE is the difference in police
use of force between

• a setting in which we intervene to force police to perceive each civilian as being from the minority racial
group and intervene to force police to stop each civilian

• a setting in which we intervene to force police to perceive each civilian as being from the majority racial
group and intervene to force police to stop each civilian

28Selection can be a a mediator only when it is equivalent to a substantive binary variable in the causal graph. Our working
example is an example of this.
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where we average this difference in use of force only over the police-civilian encounters in which police actually
did make a stop. A key to understanding this effect is to consider that, for some encounters in which a stop
was made in reality, under a different perceived civilian race the officer may not have made a stop. ICDEs
evaluate what would have happened if we intervened in these cases to ensure that the officer still made a stop,
since we only have data on encounters in which stops were actually made and so can only make estimates
about cases in which stops were made. In this example, the path D U → Y violates ISAC and confounds
the ICDE. That is, sample selection creates a purely statistical association between perceptions of race and
use of force that we cannot untangle from the direct effect, even for police-civilian encounters we observe.

5 Discussion

5.1 Connections to existing work

Numerous literatures relate closely to the problems of sample selection and internal validity, yet we argue
that the tools proposed here fill a gap in the toolkit available to researchers to fully and reliably examine the
potential threats due to sample selection and to illuminate possible solutions. Sample selection can arise at
various points in the a study: during study entry (e.g., from non-participation or participation that is not
representative of the population) or the data gathering process (e.g., only gathering data on some segment
of the population), between study entry and analysis (e.g., loss to follow-up), or even during analysis as a
result of conditioning or subsetting. Montgomery et al. (2018) illustrate how sample selection can threaten
not only observational studies but also experiments. Sample selection and the associated bias goes by many
different names in various fields: sample truncation bias, non-response bias, attrition bias, ascertainment bias,
Heckman selection bias (Heckman, 1979), selection on the treatment, selection on the outcome, Berkson’s bias,
homophily bias, survival bias, m-bias, differential loss to follow up, volunteer bias, self-selection bias, healthy
worker bias, and others. See Hernán et al. (2004); Elwert and Winship (2014); Schneider (2020) for overviews
of the various forms that sample selection can take. Different research traditions have proposed informal
guidelines for determining when sample selection threatens internal validity. Most notably, Campbell, Stanley,
and their co-authors (Campbell, 1957; Campbell and Stanley, 1963; Cook and Campbell, 1979; Shadish
et al., 2002) introduce the language of validity29 to discuss conceptually how bias can arise in the design and
implementation of studies and how these challenges can be overcome. Pearl and others (Pearl, 1995, 2009,
2014; Shpitser et al., 2010; Spirtes et al., 2000) advocate causal graphs and structural causal models that can
be seen as subsuming the potential outcomes approach (Rubin, 1974, 1978, 1990) to causal inquiry. Matthay
and Glymour (2020) take the very useful step of explicitly connecting the graphical approach to the Campbell
tradition.

There are graphical approaches focused on identification of causal effects (Pearl, 1995; Shpitser et al.,
2010) that do not directly discuss sample selection. There are many recently-developed approaches focused
on generalizability and transportability (Bareinboim and Pearl, 2012, 2016; Correa and Bareinboim, 2017;
Correa et al., 2018, 2019; Bareinboim et al., 2014; Lesko et al., 2017; Pearl, 2015b; Pearl and Bareinboim,
2011, 2014, 2019; Hartman et al., 2015; Egami and Hartman, 2021). There are graphical approaches focused

29Shadish et al. (2002) describe “internal validity” as concerning whether the covariation between the treatment and outcome
results from a causal relationship for the study sample.

15



[DRAFT]

on generalizing conditional causal effects from complete cases when there is missing data (Daniel et al., 2012),
generalizing in the face of missing data and sample selection (Saadati and Tian, 2019), and generalizing
from missing data alone (Mohan and Pearl, 2014, 2021).30 Didelez et al. (2010) focus on outcome dependent
sampling, on the causal odds ratio, and mostly on generalization; they also present some results on testing for
the presence of conditional causal effects.

Our criterion builds on these powerful, existing graphical criteria, but focuses on and facilitates easy
analysis of internal validity under non-random sample selection by visualizing the effects of sample selection
and illustrating whether identification of internally valid causal effects is possible regardless of the role that
the sample selection node plays in the causal graph. For instance, ISAC is similar to the back-door criterion
of Pearl (1995). However, understanding that sample selection is a form of conditioning that could be
contemplated on a DAG, simply including S in the adjustment set of the back-door criterion would violate
the back-door criterion when S is post-treatment, since the back-door criterion does not allow post-treatment
conditioning. Thus, we would violate the back-door criterion in cases where we can make causal progress.
Further, Pearl (2009) Section 11.3 discusses how background noise nodes that are often left off of DAGs can
become important under certain types of conditioning. We ensure that, when relevant, such variables are
included on internal selection graphs so that all effects of sample selection are represented graphically. Second,
ISAC is also similar to the adjustment criterion of Shpitser et al. (2010). However, simply including S in
the adjustment set of the adjustment criterion would violate the adjustment criterion when S is a mediator
or a descendant of a mediator. This is because the adjustment criterion disallows conditioning on nodes
that appear on causal paths or that are descendants of nodes on causal paths. Thus, we would violate the
adjustment criterion in cases where we can make causal progress. Third, ISAC is similar to the generalized
back-door criterion of Daniel et al. (2012), which is focused on generalization from complete cases when there
is missing data but not internal validity. However, the generalized back-door criterion does not allow for any
post-treatment adjustment and, in Daniel et al. (2012), is shown to only to identify Z-conditional causal
quantities. Finally, ISAC is similar to the generalized adjustment criterion of Correa et al. (2018), but ISAC
is less restrictive since it focuses on internal rather than external validity. Specifically, ISAC requires a subset
of the causal assumptions required by the generalized adjustment criterion.

Despite existing approaches not focusing on sample selection and internal validity, sample selection is
recognized as a threat to internal validity that is fundamentally different from common cause confounding
(Hernán et al., 2004; Hernán and Robins, 2020; Infante-Rivard and Cusson, 2018; Matthay and Glymour,
2020; Smith, 2020; Elwert and Winship, 2014; Schneider, 2020). Other authors discuss sample selection in the
context of external validity (Arah, 2019; Flanders and Ye, 2019; Thompson and Arah, 2014) and mention
the threat to internal validity posed by sample selection (Berk, 1983; Tripepi et al., 2010; Cuddeback et al.,
2004; Hernán and Robins, 2006; Larzelere et al., 2004; Smith and VanderWeele, 2019; Westreich et al., 2018;
Mathur, 2022). The celebrated approach presented in Heckman (1979) makes parametric assumptions and
requires data for the entire population to estimate a model for the probability of selection. Hernán (2017)
shows how sample selection can present different problems for generalization and external validity than it
does for internal validity; we provide clarity on this in the general. Recent papers have also parsed specific
types of sample selection using graphical tools. (Lu et al., 2022; Sjölander, 2023)

30Missing data can be seen as a generalization of sample selection. (Saadati and Tian, 2019; Westreich, 2012; Howe et al., 2015)
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5.2 Library of Examples

Let us consider more examples (in Tables 1 - 4) and see what lessons researchers might take from everything
we’ve seen. We start with examples where covariate adjustment turns out not to be necessary. In (1.a.),
sample selection is a confounder of the treatment-outcome relationship. In (1.d.), sample selection is indirectly
associated with the outcome through a common cause. In (1.e.), sample selection is indirectly associated
with the treatment through a common cause. In (1.f.), treatment is a direct cause of sample selection. (1.g.)
is the setting where sample selection is not related to the treatment or outcome directly or indirectly. For
the examples in which selection is related directly or indirectly with the outcome, we might not be able
to generalize from the sample to the population and in the best case would still need data external to the
selected sample on the covariates that separate selection from the outcome. In all of the examples in Table
1, the adjustment set can be the empty set and satisfy ISAC. No generalized non-causal paths between D

and Y , that do not pass through S, exist and we do not condition on variables along causal paths. While
these settings are desirable in terms of not having to do any additional adjustment to identify internally valid
causal effects, researchers should not simply assume they are in such settings. Only principled argument
in accordance with knowledge of the selection mechanism can justify this. We should also recognize the
value of a formal approach to evaluating ignorability. All the assumptions and information relevant to this
determination are clearly captured in the internal selection graph; and we only need to check the conditions
of ISAC to see if identification is possible.

Next, consider examples where identification of internal causal quantities is possible but only with covariate
adjustment. These can be found in Table 2. (2.b.) has post-treatment selection in addition to sample selection
being indirectly associated with the outcome through a common cause. This would create a purely statistical
association between the treatment and outcome in the selected sample that confounds causal effects. The fact
that we are forced by sample selection to condition on a post-treatment variable presents us with no problem.
ISAC provides a straightforward approach to determining that ignorability is possible by conditioning on Z.
All generalized non-causal paths between D and Y , that do not pass through S, are blocked by Z. Of course,
if Z is not observed, identification may not be possible.

If some unobserved variable(s) being measured would allow us to satisfy the conditions of ISAC and
therefore identify causal quantities, we might consider a few solutions. First, when possible, the best option
is to gather measurements of the variable(s) for the sample at hand. These can then be used to block the
necessary generalized non-causal paths. Second, we might consider gathering measurements of proxies of the
variable. To do so, the proxies must be included in the internal selection graph, connected appropriately, and
not open any new generalized non-causal paths when conditioned on. The proxies must also be sufficiently
associated with the variable of interest so as to reduce bias. We do not explore this option further here, but
what qualifies this sufficiency needs to be carefully considered. Third, we might consider using sensitivity
analyses to explore how different assumptions about the unobserved variable(s) relates to the treatment and
outcome change the estimate that does not use the unobserved variable. We plan to explore such sensitivity
analyses in subsequent work.

Alas, we will not always be able to identify internal causal quantities. Consider the examples in Table
3. At least one generalized non-causal paths from selection cannot be blocked by any observed covariate
adjustment set. Therefore, ISAC cannot be satisfied. For some of these examples, the generalized non-causal
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path D UY → Y is created because sample selection is a descendant of the outcome and the outcome is
a collider. This can be clearly seen only in the internal selection graphs in which UY is included and the
path D UY is drawn. In the original causal graphs, these important elements are not included. Many
other situations will also not allow us to identify internal causal quantities when covariates that might block
generalized non-causal paths are not observed. We should also note the similarity between the graphs (2.c.)
and (3.e.) as well as (2.d.) and (3.c.). In these, the direction of only one edge is changed but the ability to
identify is completely different.

Finally, consider the setting where sample selection is a mediator or a descendant of a mediator; Table 4.
(4.d.) provides an interesting case, where selection is a mediator and the central node of an M-shape DAG.
ISAC still provides a clear approach to identifying ICDEs by adjusting for Z. All generalized non-causal
paths between D and Y , that do not pass through S, are blocked by Z.

5.3 Lessons

We now draw several important lessons from our discussion. First, researchers need to be careful about
the details of the causal graph that they are studying. Including a sample selection node in every causal
model and careful consideration of the sample selection mechanisms is required to determine the threat that
sample selection poses to internal validity and what, if anything, might be done about it. Second, there is
potential for users to intentionally or unintentionally favor one graph over another very similar graph in order
to show that some causal quantity is identifiable. These are difficult but inherent problems in causal study
and good-faith efforts to do credible causal inference should spend ample time defending the specific causal
model being analyzed. Let’s consider what other lessons we can take away from what we’ve seen.

• Informal applications of other adjustment criteria to identification of internal causal quantities in light
of sample selection can be misleading and should be avoided.

• Sample selection can influence identification of internal causal quantities, even when it is not a collider.
• When sample selection manifests as attrition or some other post-treatment type of selection, random-

ization of treatment assignment does not automatically ameliorate sample selection problems even for
internal validity. Therefore, the discussion here is not limited to observational studies.

• Sample selection does not always threaten internal validity.
• Selection on the outcome is usually a problem for identification of internal causal quantities.31 However,

association of the outcome and selection does not automatically present a problem. When a third
variable causes both and the two are only indirectly related, there may be no problem.

• Post-treatment selection is typically not a problem on its own.32

• Indirect association between selection and the outcome or selection and the treatment are typically not
problems on their own but can be when they appear together.

• When selection is a mediator or descendant of a mediator, causal quantities can still be identified.
31Though it can be allowed in certain circumstances, like case control studies in which the causal odds ratio is the target.

See Daniel et al. (2012) section 4.5 “Missingness driven only by outcome.” This and examples like (1.h.) highlight that rules of
thumb like “selection on the outcome is biasing” might not correctly characterize all scenarios. Hence, while such general lessons
can be useful guidance, it is important to consider the specifics of each application and use formal tools and systematic analysis.

32See the next paragraph for a brief discussion of sample selection in instrumental variables, in which case post-treatment
selection is typically a problem. Again, this demonstrates how simple rules of thumb like “post-treatment selection is not biasing”
can be misleading and the specifics of each application should be considered and analyzed using formal tools.
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These lessons can also provide useful insights for the role that sample selection plays in identification
strategies other than simple covariate adjustment, like instrumental variables.33 While such strategies often
require some additional assumptions, they typically also involve conditional ignorability assumptions and/or
can be guided by graphical analysis. The internal validity of these strategies can also be threatened by sample
selection in the ways similar to those we’ve seen, in which case the tools provided here can provide clarity. For
example, instrumental variables approaches involve ignorability of the instrument with respect to potential
outcomes. Sample selection can threaten whether such ignorability holds in a variety of ways. See Table 5 for
examples. As with simple covariate adjustment, the tools and lessons provided in this paper can be useful for
other identification strategies to analyze the effects of sample selection.

We again emphasize that these types of lessons do not apply universally. The specific causal quantities
that can be identified, and whether identification of them is possible, depends on the causal model and
which variables are observed.34 Whether selection is a collider, confounder, mediator, or indirectly related
to variables of interest, ISAC provides clear guidance on identification. Formal tools like this should be the
default mode for determining when and how internally valid causal effects can be identified. The target of
causal studies is often a causal effect averaged across the study sample alone. The ability to estimate such
an effect without bias is called internal validity. We’ve presented a simple graphical framework for dealing
with sample selection that allows us to reliably attain internal validity for causal effects for the selected study
sample. This framework allows sample selection to play any role in the original causal graph and provides
clear guidance on which causal quantities are identifiable and what is required for identification through
covariate adjustment. We’ve also seen many examples and have discussed key lessons that, we hope, will
prove useful for researchers in a variety of settings, as they attempt to obtain internally valid estimates of
causal effects for their study sample.

33See Angrist et al. (1996); Hernán and Robins (2006) for discussion of instrumental variables. See Swanson et al. (2015);
Canan et al. (2017); Swanson (2019); Hughes et al. (2019); Elwert and Segarra (2022) for discussions of sample selection and
instrumental variables.

34Also see Appendix section B.8 for a discussion of how one might deal with unknown edge directions.
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Table 1: Identification Possible without Covariate Adjustment
Relations with Selec-
tion

Causal Graph Internal Selection Graph Explanation

Selection as
Confounder or Child of
Confounder

D Y

S(1.a.)

D Y

S

UYUD

Let the adjustment
set be {∅}. ISAC is
satisfied. No
generalized non-causal
paths between D and
Y , that do not pass
through S, exist.

D Y

S

W

(1.b.)

D Y

S

W

UYUD

D Y

SW Z(1.c.)

D Y

SW Z

UYUD

Indirect Association
with Selection

D Y

S

Z

(1.d.)

D Y

S

Z

UYUD

D Y

S

W

(1.e.)

D Y

S

W

UYUD

Post-Treatment
Selection

D Y

S(1.f.)

D Y

S

UYUD

Selection Unrelated to
Treatment and
Outcome D Y

S(1.g.)

D Y

S

UYUD

Selection on Outcome;
Treatment Does not
Cause Outcome

D Y S(1.h.) D Y S

UYUD
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Table 2: Identification Possible with Covariate Adjustment
Relations with Selec-
tion

Causal Graph Internal Selection Graph Explanation

Post-Treatment
Selection

D Y

ZW

S

(2.a.)

D Y

ZW

S UYUD

Let the adjustment
set be {Z}. ISAC is
satisfied. All
generalized non-causal
paths between D and
Y , that do not pass
through S, are blocked
by Z. Note that for
(2.c.), (2.d.), and (2.f),
the adjustment set
could also be {W}.

D Y

S

Z

(2.b.)

D Y

S

Z

UYUD

D Y

S

ZW

(2.c.)

D Y

S

ZW

UYUD

UW

Indirect Association
with Selection

D Y

S

W Z

(2.d.)

D Y

S

W Z

UYUD

D YZ

W

S

(2.e.)

D YZ

W

UYUDS

D Y

W Z

S

(2.f.)

D Y

W Z

S

UYUD

D Y

S

W1 W2

Z1 Z2

Z3(2.g.)

D Y

S

W1 W2

Z1 Z2

Z3

UYUD

ISAC is satisfied by
{Z3,W1} or {Z3,W2}.
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Table 3: Identification Not Possible with Covariate Adjustment
Relations with Selec-
tion

Causal Graph Internal Selection Graph Explanation

Selection on Outcome
D Y

S(3.a.)

D Y

S

UYUD

The generalized
non-causal path
D UY → Y cannot
be blocked by any
covariate adjustment
set. Therefore, ISAC
cannot be satisfied.

D Y

S

W

(3.b.)

D Y

S

W

UYUD

D Y

S

W Z

(3.c.)

D Y

S

W Z

UYUD

Selection on Outcome
and Post-Treatment
Selection (Berkson’s
Bias) D Y

S(3.d.)

D Y

S

UYUD

D Y

S

W Z

(3.e.)

D Y

S

W Z

UYUD

UW

Indirect Association
with Selection

D Y

S(3.f.)

D Y

S

UYUD

The generalized
non-causal path D Y
cannot be blocked by
any covariate
adjustment set because
the common direct
causes are unobserved.
Therefore, ISAC
cannot be satisfied.
(3.f.) is like (2.d.),
but where the common
direct causes are
unobserved.

D Y

S(3.g.)

D Y

S

UYUD

D Y

S(3.h.)

D Y

S

UYUD
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Table 4: Selection as Mediator or Descendant of Mediator
Causal Graph Internal Selection Graph Explanation

D Y

S(4.a.)

D Y

S

UYUD

Let the adjustment set be {∅}. ISAC is satis-
fied. No generalized non-causal paths between
D and Y , that do not pass through S, exist.

D Y

ZS(4.b.)

D Y

ZS

UYUD

Let the adjustment set be {Z}. ISAC is
satisfied. All generalized non-causal paths
between D and Y , that do not pass through
S, are blocked by Z.

D Y

ZW S(4.c.)

D Y

ZW S

UYUD

UW

D Y

S

W Z

(4.d.)

D Y

S

W Z

UYUD

D Y

S

M

(4.e.)

D Y

S

M

UYUD

UM

Let the adjustment set be {∅}. ISAC is sat-
isfied. The only generalized non-causal path
between D and Y is one on which M , the medi-
ator of which S is a descendant, is an ancestor
of Y .

D Y

M

W Z

S

(4.f.)

D Y

M

W Z

UYUD

S

Let the adjustment set be {Z}. ISAC is satis-
fied. All generalized non-causal paths between
D and Y , that do not pass through S, are
blocked by Z. And the only other generalized
non-causal path between D and Y is one on
which M , the mediator of which S is a descen-
dant, is an ancestor of Y . This path contains
UM and is not shown here for clarity.
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Table 5: Instrumental Variables and Sample Selection
Causal Graph Internal Selection Graph Explanation

IV D Y

S Z

(5.a.)

IV D Y

S Z

UIV UD UY

Future work will address this. But
for now we can see that internal selec-
tion graphs can aid in the analysis of
whether instrumental variables is pos-
sible.

IV D Y

U

S

(5.b.)

IV D Y

U

S

UIV UD UY

IV D Y

U

S

(5.c.)

IV D Y

U

S

UIV UD UY

IV D Y

S
U1 U2

(5.d.)

IV D Y

S
U1 U2

UIV UD UY

IV D Y

U

S
U1

(5.e.)

IV D Y

U

S
U1

UIV UD UY

IV D Y

S

(5.f.)

IV D Y

S

UIV UD UY
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A Exercises

A.1 Exercise: Height and Free Throw Percentage in the NBA

Consider an oddity of the sporting world: taller players tend to have lower free throw percentages in the
NBA. (McMahan, 2017; Helin, 2011) Looking at NBA player-season free-throw percentages from 1950 - 2017
versus player height in Figure 5, we see a negative relationship with a correlation of -0.25.35 Indeed, a simple
linear regression produces a slope estimate of a decrease of 0.3 percentage points in free throw percentage for
each additional centimeter of height; see Table 6. This estimate is meant only as a statistical summary not a
causal effect, indeed the relationship appears to be non-linear.

Figure 5: Free Throws and Height

Table 6: Free Throws and Height

Estimated Effect SE CI Low CI High DF
-0.0033 8.34e-05 -0.0034 -0.0031 22995

But what might the underlying causal relationships look like? Does being taller cause you to make fewer
free throws? Likely not. Perhaps there is a slightly positive direct effect of height on shooting, since taller
people are just closer to the basket. Additionally, taller players typically play positions that put them closer
to the basket than the free throw line. Therefore, taller players might not practice shooting from the free
throw distance as much as shorter players do. Finally, there may be a form of sample selection bias sometimes

35These data come from https://www.basketball-reference.com/ and https://www.kaggle.com/datasets/drgilermo/
nba-players-stats.
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called ascertainment bias. (Elwert and Winship, 2014; Schneider, 2020) It is likely that shooting ability has a
positive influence on making it into the NBA. Simultaneously, it is likely that height has a positive influence
on making it into the NBA. Thus, making it into the NBA is a collider between height and shooting ability.
Limiting our analysis to players that made it into the NBA means we have implicitly conditioned on this
collider. This can create a spurious negative relationship between height and shooting percentage.

Figure 6: DAG and internal selection graph for height (D) and free throw percentage (Y ), where M might
represent a mediator like players’ position and S represent an indicator for players in the NBA

D Y

S

M

(a) DAG

D Y

S

UY
UD

UM

M

(b) Internal Selection Graph

The internal selection graph for this setting might be captured by something like Figure 6. Generalized
non-causal paths between height and shooting percentage are created as a result of selecting the NBA sample.
However, in this example, it actually might be reasonable to think that a negative effect of height on shooting
percentage mediated by position is the driver behind the observed negative relationship. Though, as the
internal selection graph makes clear, even the mediator has purely statistical relationships with the treatment
and outcome due to sample selection. Paths like D Uy → Y and D Y threaten the internal validity of an
analysis of mediation.

A.2 Exercise: Zhou and Fishbach (2016)

Consider two online survey experiments from Zhou and Fishbach (2016). The authors aim to show that online
experiments are often subject to high levels of attrition that can create biases. The two specific experiments we
discuss here were actually designed to induce bias resulting from attrition. These experiments provide intuitive
illustrations of how sample selection can bias treatment effect estimates, even for randomized experiments,
and have the internal selection graph in Figure 7.

Figure 7: Zhou and Fishbach (2016) Exercise Graphs
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A.2.1 “Can doing more feel like less?”

Zhou and Fishbach (2016) “predicted that an experiment that assigns participants to recall many versus
few happy events would result in a biased sample consisting of mainly happy people in the many-events
condition, because happy events come to mind easily for these people, whereas the less-happy people in this
condition would have to quit this difficult task. As a result of this experimental attrition, recalling many
happy events could feel easier than recalling fewer happy events.” The authors conducted an experiment of
this form using Amazon Mechanical Turk. D is the randomly assigned treatment which consisted of being
assigned to recall either 4 or 12 happy events from the last year. Y is a measure of how difficult the treatment
task was to complete on a 7 point scale (1 = not difficult; 7 = extremely difficult). Z is a latent variable
that captures each participant’s ambient happiness. S is attrition from the study. The authors describe the
attrition statistics as follows: “A total of 196 MTurk workers consented to take part in this experiment...
Ninety-four of these participants dropped out of the survey once they learned what their first task (i.e., the
experimental manipulation) entailed.... The dropout rate in the many condition, 69% (69/100), is significantly
higher than in the few condition, 26% (25/96)...” The participants that dropped out did not complete the
recollection task or rate the difficulty of the task. The mean difficulty of recall rating for the group asked to
recall 12 happy events was 2.74. The mean difficulty of recall rating for the group asked to recall 4 happy
events was 3.97. This is despite the fact that, “[a]ll else being equal, recalling 12 happy events from the past
year requires more effort than recalling four such events.” Clearly the naive treatment effect estimate is biased
even for the sample of individuals that did not drop out.

The authors discuss that sample selection introduces a confound as the task is easier for happier people.
This would unbalance the treatment groups. The graphical tools we have developed make this mechanism
completely clear. Which treatment group you are randomly assigned to influences your decision whether to
drop out or not, since one treatment is more demanding than the other and some individuals might not want
to put in the extra effort. How happy you are generally influences both your decision to drop out or not, since
being happier makes the task less demanding, and your rating of how difficult the task was, for the same
reason. Since we are forced to condition on the selection node, a collider between the treatment assignment
and happiness, a spurious relationship is created between the random treatment assignment and difficulty,
which biases the estimate of the causal effect. This can easily be seen from the internal selection graph. ISAC
is violated since we cannot block the path D Z → Y , given that ambient happiness is unobserved.

A.2.2 “Can imagining applying eyeliner help one lose weight?”

Zhou and Fishbach (2016) “predicted that an experiment that assigns participants to imagine applying eyeliner
(vs. applying aftershave cream) would end up with a sample that is disproportionally female. As a result,
participants assigned to imagine applying eyeliner would report weighing less than those assigned to imagine
applying aftershave.” Obviously, there should be no direct causal effect of which question you are asked
on weight. The authors again conduct an experiment of this sort using Amazon Mechanical Turk. D is
the randomly assigned treatment which consisted of either being assigned to describe how applying versus
not applying eyeliner would make one feel differently or being assigned to describe how applying versus
not applying aftershave cream would make one feel differently. Y is the outcome and is the participants’
self-reported weight in pounds. Z is an indicator variable that captures each participants gender. S is attrition
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from the study. The authors describe the attrition statistics as follows: “A total of 144 MTurk workers
consented to take part in this experiment... Forty-one of these participants dropped out of the survey once
they learned what their first task (i.e., the experimental manipulation) entailed.... The dropout rates were
comparable across the two conditions: 32.4% (24/74) in the eyeliner condition and 24.3% (17/70) in the
aftershave cream condition ...” The participants that dropped out did not complete the treatment task or rate
the difficulty. The mean weight for the group asked to discuss eyeliner was 159 pounds. The mean weight for
the group asked to discuss aftershave cream was 182 pounds. This is despite the fact that, discussing these
products has no effect on weight. Clearly the naive treatment effect estimate is biased even for the sample
of individuals that did not drop out. The authors observed that the eyeliner group did indeed have more
females than the aftershave group.

Table 7: Zhou and Fishbach (2016) Exercise - Average Weight by Treatment

Treatment Average Weight N
Eyeliner 159.02 49
Aftershave 182.08 53

The authors discuss that sample selection introduces a confound as “imagining applying eyeliner would be
difficult or even aversive for average adult males, inducing them to quit.” This would unbalance the treatment
groups. The graphical tools we have developed make this mechanism clear. Which treatment group you
are randomly assigned to influences your decision whether to drop out or not, since one treatment is more
demanding than the other depending on your gender. So your gender and the your treatment assignment
both influence your decision to drop out or not. Gender also influences weight on average, given that “females
generally weigh less than males.” Since we are forced to condition on the selection node, a collider between
the treatment assignment and gender, a spurious relationship is created between the random treatment
assignment and weight, biasing the effect estimates. This can easily be seen from the internal selection graph.
ISAC is violated since we cannot block the path D Z → Y , when gender is unobserved.

If gender is observed, and our causal graph is accurate, then we would be able to satisfy ISAC. Since the
authors did observe participant gender, they could have adjusted for gender to get unbiased treatment effect
estimates. We take this step here. Taking simple averages of weight by treatment and gender, we see that
there is actually a difference in average weight between females who received the two treatments; something
similar is true for males, but less so. In reality, additional variables capturing each individual’s conformity to
gender norms and personal preferences with respect to these products also may also be common causes of
attrition and weight. So adjusting for gender may not be enough to completely identify the causal effect.

We might wonder whether some other variables that might predict weight would help reduce some of the
variability in weights that could be leading differences in weight, whether these differences are due purely to
sampling error or to some systematic causal relationship driving the differences, like gender does. We consider
adjusting for (in a simple linear model) individuals’ birth year, English as first language, race, education,
income, total duration of survey, and location information. All of these are pre-treatment variables and we do
not believe adjusting for any of these variables will induce or amplify bias. It is possible that some are also
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Table 8: Zhou and Fishbach (2016) Exercise - Average Weight by Treatment and Gender

Treatment Gender Average Weight N
Eyeliner Male 182.34 29
Aftershave Male 191.76 37
Eyeliner Female 125.20 20
Aftershave Female 159.69 16

related to attrition, like gender is. We believe adjusting for these will improve precision and reduce bias.36

We fit a linear model with these covariates that does not adjust for gender and one that does. We find that,
while the model without gender still shows a positive effect on weight for individuals who discussed aftershave.
The model that adjusts for gender cannot distinguish the treatment effect from zero.

Table 9: Zhou and Fishbach (2016) Exercise - Linear Model Treatment Effect Estimates

Estimated Effect SE CI Low CI High
Not Adjusting for Gender 20.344 9.798 0.88 39.80
Adjusting for Gender 13.937 8.705 -3.35 31.23

A.3 Exercise: Discrimination in Various Forms

Similar mechanisms and analysis from our working example of racial bias in policing also apply for a range of
fairness and discrimination questions. The examples described by Figure 8 are based on examples discussed in
Mitchell et al. (2021). In the lending example, researchers might be attempting to understand how immigrant
status relates to loan repayment or simply predicting repayment. Often the data used in such an investigation
would only include individuals who actually received loans, as they have the potential to repay. In the pre-trial
release example, we might want to understand how perceptions of race relate to appearance at an appointed
court date or simply predicting appearance. Again, the data in such investigations are typically be limited to
individuals who were actually released, as they are able to appear or not. In these examples, we again see
purely statistical relationships between the protected or sensitive group statuses and outcomes that can bias
the results of the investigation.

A.4 Exercise: Hazlett (2020)

Hazlett (2020) considers the effect of being directly harmed in the conflict in Darfur in early 2000s on attitudes
about peace using a survey of individuals in refugee camps. The paper controls for things like village, gender,
and other important covariates. While adjustment for these covariates likely reduces non-causal association
between the treatment and outcome, being harmed may effect whether someone re-entered the conflict (and
hence was not captured in the survey). An individual’s pro-peace predisposition (before the conflict) may be a

36We assert this and the conclusions in this paragraph to keep our demonstration simple. Additional consideration might
reveal more about how adjusting for these variables alters causal effect estimates.
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Figure 8: Discrimination in Lending: D indicates immigrant status, S indicates receiving a loan, Y
indicates repayment, and U represents unobserved factors. Discrimination in Pre-Trial Release: D
indicates perception of race, S indicates pre-trial release, Y indicates appearance for court date, and U
represents unobserved factors.

D YS

U

UYUD

common cause of both whether they re-entered the conflict and their peace attitudes at the time of the survey.
This may cause there to be a generalized non-causal path running from harm to pro-peace predisposition to
attitude about peace that could threaten the internal validity of estimated effects. In Figure 9, D is direct
harm, Y is attitudes about peace, Z is pro-peace predisposition (before the conflict), S is being in the survey
from the refugee camp (i.e., did not re-enter the conflict), and X is observed covariates like village and gender.
Hazlett (2020) is able to adjust for the observed covariates, but the path D Z → Y cannot be blocked since
pro-peace predisposition is not observed.

Figure 9: Possible threat to internal validity in Hazlett (2020)
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(b) Internal Selection Graph

Another perspective, which is argued in the paper, is that the process that would drive individuals back
into the conflict would “act more powerfully for men of fighting age because in this context, few women or
elderly participate directly in the armed opposition groups. If such a process drove the results, we would see
the apparent effect most strongly among young men but should see little or no apparent effect among women
or the elderly who are far less likely to join the opposition. This is not the case.” (Hazlett, 2020) We might
then claim that the effect of direct harm on peace attitudes among women and the elderly is perhaps not
biased by this sample selection mechanism.
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B Technical Appendix

Here we provide technical details and prove the results found in the main text. First, we briefly discuss why
we work with potential outcomes. We then introduce a series of definitions. These are followed by a series
of lemmas. Then we state our main results in a set of theorems that follow directly from the lemmas. We
conclude with discussions of IPW estimation, when conditioning on a collider creates an association, and
when a graph contain edges with unknown directions.

B.1 Sample selection, the do-operator, and potential outcomes

Let us linger on the choice to use potential outcomes as opposed to the do-operator (Pearl, 1995, 2009)
in our discussion. We discuss post-treatment selection, selection as a mediator, selection as the child of a
mediator, and all other major roles that selection can play in the structure of causal models. In the case of
non-post-treatment selection, potential outcomes will typically have the same interpretation as the do-operator.
In the case of selection as a mediator and selection as a descendant of a mediator, the causal effects of interest
are typically defined using potential outcomes. (Robins and Greenland, 1992; Pearl, 2001; VanderWeele, 2011;
VanderWeele and Vansteelandt, 2009; Richiardi et al., 2013) So here potential outcomes notation is really the
natural and traditional choice. In the case of post-treatment selection, where selection is not a mediator or a
descendant of a mediator, p(Yd|S = 1) is usually of interest and not p(Y |do(D = d), S = 1) = p(Yd|Sd = 1).37

As Pearl (2015a) states, "By the counterfactual query Qc[= p(Yd|S = 1)] we mean: Take all units which
are currently at level [S = 1], and ask what their Y would be had they been exposed to treatment [D = d].
This is different from Qdo = [p(Y |do(d), S = 1)], which means: Expose the whole population to treatment
[D = d], take all units which attained level [S = 1] (post exposure) and report their Y ’s." Further, Pearl
(2015a) states "Qdo is rarely posed as a research question of interest, probably because it lacks immediate
causal interpretation. It serves primarily as an auxiliary mathematical object in the service of other research
questions. ... I have not seen Qdo presented as a target query on its own right." For non-post-treatment
selection, p(Yd|S = 1) = p(Y |do(d), S = 1), since Sd = S. In our context, we will typically be interested in
quantities of the type of p(Yd|S = 1), which tell us the distribution of outcomes for units that were selected in
reality, had they been exposed to treatment D = d.

B.2 Definitions

Definition B.1 (SCM (adapted from Pearl (2009))). A structural causal model, M , has the following parts
1. U is a set of background variables determined by exogenous factors;
2. V is a set {V1, V2, . . . , Vn} of variables determined by variables in the model;
3. F is a set {f1, f2, . . . , fn} of functions that map fi : Ui ∪ PAi → Vi, where Ui ⊂ U and PAi ⊂ V \Vi

and the entire set F forms a mapping from U to V . That is, each fi assigns a value to Vi that depends
on the values of a select set of variables in V ∪ U (vi = fi(pai, ui)), and the entire set F has a unique
solution F (u).

4. p(u) =
∏

p(uj) is a probability function defined over the domain of U .

37p(Y |do(D = d), S = 1) = p(Y,S=1|do(D=d))
p(S=1|do(D=d))

= p(Yd,Sd=1)
p(Sd=1)

= p(Yd|Sd = 1). (Pearl, 2014) In this case, Sd is the potential
selection value when the treatment variable D takes the value that we are investigating in Yd.
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Definition B.2 (Sub-Model (adapted from Pearl (2009))). Let M be a causal model, D be a set of variables
in V , and d a particular realization of D. A submodel Md of M is the causal model Md, where F is replaced
with Fd, which is formed by deleting the functions for the variables in D and replacing them with constant
functions D = d.

Definition B.3 (Potential Outcome (adapted from Pearl (2009))). Let D and Y be two subsets of variables
in V . The counterfactual values of Y when D had been set to d, written Yd, is the solution for Y of the set of
equations Fd, given the realized values of the background variables, U .

Definition B.4 (Causal Graph (adapted from Shpitser et al. (2010), also see Pearl (1988, 2009))). A SCM
induces a causal graph in the following way. Each variable in the model is represented by a node. A node
corresponding to variable Vi has edges pointing to it from every variable whose value is used to determine the
value of Vi by the function fi. Exogenous variables have no edges pointing to them. A causal graph is an
I-map (see Definition B.11 below) for p(v).

Definition B.5 (Path). A path is a sequence of edges in G where each pair of adjacent edges in the sequence
share a node, and each such shared node can occur only once in the path.

Definition B.6 (Causal Path). A causal path from D to Y is a path from D to Y on which all edges are
directed and point away from D and toward Y .

Definition B.7 (Proper Causal Path (Shpitser et al., 2010))). Let D,Y be sets of nodes. A causal path from
a node in D to a node in Y is called proper if it does not intersect D except at the end point.

Definition B.8 (Non-Causal Path). A non-causal path is a path that is not a causal path.

Definition B.9 (Parents, Ancestors, and Descendants). Parents of node X are the nodes in the graph from
which an edge points directly to X. An ancestor of X is any node which has a causal path to X. A descendant
of X is any node which X has a causal path to.38

Definition B.10 (d-Separation and Blocking (adapted from Pearl (2009))). Two sets of nodes, D,Y , in
a graph G are said to be d-separated by a third set, Z, if every path from any node D0 ∈ D to any node in
Y0 ∈ Y is blocked. A path is blocked by Z if either [1] some W is a collider on the path between D,Y and
W ̸∈ Z and the descendants of W are not in Z or [2] W is not a collider on the path but W ∈ Z.

Definition B.11 (I-map (adapted from Pearl (1988))). A causal graph G is said to be an I-map of a
dependency model M if every d-separation condition displayed in G corresponds to a valid conditional
independence relationship in M . That is, for every set of three nodes X, Y , and Z, if Z d-separates X from
Y in G, then X is independent of Y given Z.

Shpitser et al. (2010) discuss a graphical representation called latent projections of causal graphs that
contain both directed and bidirected edges. Latent projections allow us to exclude latent variables in convenient
ways. Specifically, they include a node for every observed variable. However, two observable nodes A and B

are connected by a directed edge only when any and all intervening variables between A and B are latent.
38We do not consider a node to be a descendant of itself.
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Also, A and B are connected by a bidirected edge when there is a path from A to B that is not d-separated
that starts with an edge pointing into A and ends with an edge pointing into B and all the nodes on this
path are latent other than the end points. As Shpitser et al. (2010) point out, latent projections retain all
d-separation statements from the original graph. We will also allow for such latent projections to be used to
simplify graphs. For our purposes, we do not allow sample selection to be treated as a latent variable and so
it should always be included as a separate node in the graph.

Definition B.12 (Twin-Network (adapted from Shpitser et al. (2010))). The twin network graph, N , (Balke
and Pearl, 1994b,a) displays counterfactual independence among two possible worlds, the pre-intervention
world which is represented by the original graph G, and the post-intervention world, which is represented by
the graph GD (a copy of G with the edges pointing into D deleted and D replaced with D = d). The twin
network is an I-map for the joint counterfactual distribution p(v, vd), where V is the set of all observables,
and Vd is the set of all observable variables after the intervention do(D = d) was preformed. The observable
nodes in these two graphs share the U variables, to signify a common history of these worlds up to the point
of divergence due to do(D = d). We add the additional refinement from Shpitser and Pearl (2007) where node
copies of all non-descendants of D in G and GD are merged in the twin network graph (since such nodes are
the same random variable in both the pre and post intervention worlds).

In our proofs, we will consider causal graphs and twin networks in which each bidirected edge between
nodes A and B is replaced with a node U∗

AB that is a common cause of the two nodes that were connected
with the bidirected edge and points to each of A and B. This replacement does not change d-separations
from the original graph. See Figure 10 for a simple example. Correa et al. (2018) make a similar alteration to
the causal graphs they consider.

Figure 10: Twin network with no bidirected edges
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(c) Twin Network without bidirected edge

Definition B.13 (Colliders). A collider is a node in a causal graph into which two (or more) arrow heads
point. For nodes A,B,C, let C be a collider between A and B if it appears in the following sub-path of the
causal graph: A→ C ← B.
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Definition 1 (Internal Selection Graph, G+
S ). Let G be the DAG induced by a SCM.

1. Create GS by adding an appropriately connected binary selection node, S.
2. Draw a circle around S to clearly indicate that we must limit our analysis to S = 1.
3. Add to GS any node which is a parent of the treatment or a parent of a descendant of the treatment.

(US , the background factors contributing to selection, can be excluded.)
4. Add a dashed undirected edge between all variables between which S is a collider or an ancestor of S is

a collider. We will call these dashed, undirected edges bridges.
Call the resulting graph an internal selection graph, G+

S .
(This definition is similar to the “modified extended diagram” in Daniel et al. (2012).)

Definition B.14 (Extended Twin-Network). An extended twin network, N+
S , is a twin network, NS, containing

an appropriately connected pre-intervention binary selection node, S, and any corresponding post-intervention
versions of it, where we add bridges between all variables between which the pre-intervention S is a collider or
an ancestor of pre-intervention S is a collider. (Note that pre and post-intervention versions of S are assumed
to have been added to both NS and N+

S ; we don’t use a subscript to indicate this here.) It is easy to see that,
like a twin network, an extended twin network displays counterfactual independence among two possible worlds,
the pre-intervention world which is represented by the original graph G+

S , and the post-intervention world,
which is represented by the graph (GS)D.

Extended twin networks are useful for the same reason that internal selection graphs are useful. There
can be purely statistical relationships between variables in the sample that are not captured in regular twin
networks. See Figure 11. As we saw in the main text, bridges do not create colliders, since they are graphical
representations of conditioning on sample selection when it is a collider. So bridges do not alter the underlying
fully directed graph. Since the addition of bridges does not create any colliders, d-separation and blocking
retain their definition in internal selection graphs and extended twin networks. See Lemmas B.4 and B.5 that
show how d-separation (using the same definition) in internal selection graphs and extended twin networks
corresponds to d-separation in causal graphs and twin networks. As a result, we can then get independence
statements by reasoning about internal selection graphs and extended twin networks.

Figure 11: Example of Extended Twin Network

D Y S

(a) DAG

D Y S

UD UY

(b) Internal Selection Graph

D Y S

UD UY US

D = d Yd Sd

(c) Twin Network

D Y S

UD UY US

D = d Yd Sd

(d) Extended Twin Network

Twin network graphs can become pretty complicated, even when the original causal graph only contains
three nodes.39 This is what makes graphical criteria like the one presented in this paper attractive for

39Richardson and Robins (2013a,b) also introduce a graphical approach to visualizing how post-intervention world variables
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simplifying the analysis that leads to ignorability statements. The internal selection graph maintains only the
necessary elements of the extended twin network that allow us to use the internal selection criterion to see
when conditional ignorability is possible. We are not advocating that researchers actually work with extended
twin networks themselves. We discuss extended twin networks in our proofs only. We advocate using internal
selection graphs, which are usually much simpler than twin networks and extended twin networks, and the
internal selection adjustment criterion for determining ignorability.

Figure 12: Twin Networks versus Single World Intervention Graphs (SWIGs)
In this example, W can be used to block generalized non-causal paths between D and Yd; however, only the
counterfactual world Wd appears in the "extended SWIG." The actual world W and the counterfactual world

Wd both appear in the twin network.
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Definition B.15 (Paths and Generalized Non-Causal Paths). We revise Definition B.5 to state that a path is
a sequence of edges in G+

S or N+
S where each pair of adjacent edges in the sequence share a node, and each

such shared node can occur only once in the path, where we allow the edges to be bridges, as well as directed
edges. A generalized non-causal path is a path that is not a causal path.

Definition B.16 (Route (adapted from Shpitser et al. (2010))). A route from D to Y in a graph, G+
S or N+

S ,
is a sequence of edges, where each pair of adjacent edges share a node, the unshared node of the first edge is D,
and the unshared node of the last edge is Y . (Shared nodes can occur more than once.) A route is d-separated
if the same triples are blocked as in the definition of d-separation above. The difference between a route and a
path is that paths cannot contain duplicate nodes while routes can. Note that we allow edges to be bridges.

relate to pre-intervention world variables called Single World Intervention Graphs (SWIGs). SWIGs are often simpler than twin
networks. However, they do not provide exactly the same picture of both the pre-intervention world and the post-intervention
world that twin networks do; for example, pre-intervention world post-treatment variables do not appear in SWIGs, though they
can be used to block generalized non-causal paths between the treatment and potential outcome of interest. See Figure 12. Here,
W can be conditioned on to block the open generalized non-causal path between D and Yd but the pre-intervention world W
does not appear in the SWIG, while it does appear in the twin network. The pre-intervention selection node is also missing from
the SWIG. Finally, the path D →W Z → Yd is also missing from the SWIG; we do not want to have Wd touch any bridges
since it is not actually a parent of the pre-intervention selection node. As such, we use twin networks for our discussion. This
example also demonstrates why the criterion in Daniel et al. (2012) is less general than we might want, since those authors do
not allow any adjustment for post-treatment variables. We believe that internal selection graphs and ISAC provide the simplest
approach for practitioners to analyze sample selection and internal validity, by only slightly extending the causal graphs that
they are used to seeing.
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Definition B.17 (Direct Route (adapted from Shpitser et al. (2010))). Let π be a route from D to Y in
G+

S or N+
S . Label each node occurrence in the route π by the number of times the node has already occurred

earlier in π. A direct route π∗ is a sub-sequence obtained from π inductively as follows:
• The first node in π∗ is the first node in π with the largest occurrence number.
• If the kth shared node in π∗ (and the mth node in π) is (Xi, r), and Xi ̸= Y , let the k + 1th node in π∗

be (Xj , n), where Xj is the m+ 1th node in π, and n is the largest occurrence number of Xj in π.

Definition 2 (Internal Selection Adjustment Criterion (ISAC)). A set of nodes Z in G+
S satisfies the internal

selection adjustment criterion relative to D (treatment) and Y (outcome) if
1. No element of Z lies on or is a descendant of a node that lies on a causal path originating from D and

arriving at Y . Note that an element of Z could be a descendant of D itself, if it is not on a causal path
from D to Y . Note also that elements of Z should not be on, or descendants of nodes on, causal paths
even if S is also on the causal path.

2. Z blocks every generalized non-causal path between D and Y that does not pass through S. Note that
generalized non-causal paths passing through M , when S is a descendant of mediator M , on which M

is an ancestor of Y also do not need to be blocked, assuming the previous condition is not violated.
Further, M should not be a member of Z from the previous condition.

Definition 3 (Generalization Criterion (GC)). A set of nodes Z in G+
S satisfies the generalization criterion

relative to D (treatment) and Y (outcome) if
• Z satisfies ISAC relative to D and Y and
• ZExt ⊂ Z blocks all causal and generalized non-causal paths between Y and S in G+

S other than those
that end in a causal path from D to Y .

This definition is a translation of Definition 8 from Correa et al. (2018).

B.3 Lemmas

Lemma B.1 (adapted from Shpitser et al. (2010); Pearl (1988)). Let G be a causal graph. Then any model
M with a distribution P (u, v) inducing G, if A is d-separated from B by C in G, then A is independent of B
given C, which we write A ⊥⊥ B|C in P (u, v).

Lemma B.2 (adapted from Shpitser et al. (2010)). For every route π in G+
S , the direct route π∗ is a path.

Moreover, if π is unblocked, then π∗ is unblocked.

B.3.1 Selection unrelated to mediators

Lemma B.3. If Z satisfies ISAC in G+
S relative to D and Y and S is not a mediator or descendant of a

mediator between D and Y , then Z d-separates D and Yd in N+
S .

Proof. We very closely follow the structure of the proof of Theorem 4 of Shpitser et al. (2010). We will show
the contrapositive: assuming that we are conditioning on Z, an unblocked path from D to Yd in N+

S implies
that ISAC is violated in G+

S relative to D and Y . We will proceed in the following manner:
1. Discuss the structure of π, an unblocked path from D to Yd in N+

S .
2. Discuss how sample selection relates to π.
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3. Discuss a procedure for finding the path π∗ in G+
S that corresponds to π in N+

S .
4. Discuss possible cases for π∗ in G+

S and their relation to ISAC.
[1. The structure of π.] We start by assuming that, assuming we are conditioning on Z, there is

an unblocked path from D to Yd in N+
S . We are going to call this π. We are also able to assume, without

loss of generality, that π intersects D only at the starting point of π. What are we able to say about the
structure of π across the two halves of N+

S , the pre-intervention G+
S and the post-intervention (GS)D? We

start by noticing that the elements of Z can only appear on the pre-intervention G+
S side of N+

S . This is
because we can only condition on observed variables; we cannot condition on counterfactual variables, which
are not observed. This means that we cannot condition on D = d or any of the descendants of D = d in
the post-intervention (GS)D side of N+

S . As such, as soon as π finds it way to the post-intervention side
of N+

S , the remainder of π connecting to Yd can only contain post-intervention variables, non of which are
conditioned on. Moreover, this portion of π in (GS)D can contain only edges pointing toward Yd. This
clarifies that π must be made up of first an unblocked path in the pre-intervention side, G+

S , that we will
label π1. Next π contains one edge that points from some node in G+

S to some node in (GS)D, which we label
π2. Recall that we are dealing with graphs in which all bidirected edges have been replaced. We will also see
in the next section that π2 cannot be a bridge. This means that the only type of edge that could connect
π1, which is entirely made up of pre-intervention nodes, to the post-intervention side is a directed edge from
the pre-intervention side to the post-intervention side. An edge pointing the other direction would mean
that some variables on π1 are actually post-intervention, a contradiction. Finally, π contains the path we
previously discussed, namely, a causal path that contains only descendants of D = d in (GS)D that ends with
Yd. So π is composed of π1, π2, π3. Since N+

S is built from G+
S and (GS)D, π may contain two node "copies"

that refer to the same node in G+
S .

[2. Sample selection and π.] How does sample selection relate to π? Sample selection means we
condition on S = 1. This is a pre-intervention variable. No post-intervention variable can be an ancestor of
the pre-intervention version of S, otherwise we would be considering a post-intervention version of S. So all
ancestors of the pre-intervention S are also pre-intervention variables. Therefore, all bridges in N+

S appear in
the pre-intervention side of the graph, G+

S , since we’ve assumed that we’ve replaced bidirected edges with
U∗’s with uni-directional edges that point to the nodes that the bidirected edge had pointed to. Hence,
any bridge on π will be in π1. Since we must condition on the pre-intervention S, any path on which the
pre-intervention S appears and is not a collider is blocked and so cannot be π. Also, any path on which the
pre-intervention S appears and is a collider (or for which S is a descendant of a collider on the path) will
correspond to a generalized non-causal path that is identical to the original path except that the collider
is not on the generalized non-causal path and the parents of the collider are connected by a bridge on the
generalized non-causal path. If the generalized non-causal path is not blocked then the original path will
also not be blocked; if the generalized non-causal path is blocked then so is the original path. Therefore,
we can limit our analysis to such generalized non-causal paths. So we consider π that do not contain the
pre-interventional S, though π may contain bridges in π1. Since we have assumed that sample selection is not
a mediator or a descendant of a mediator, post-intervention versions of S will not appear on π3 if they exist
at all in N+

S .
[3. Finding the path π∗ in G+

S that corresponds to π in N+
S .] How can we find a path in G+

S that
corresponds to π? We follow a procedure laid out in Shpitser et al. (2010). First, we create π′, a route in G+

S ,
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in this way:
1. Start by replacing each instance of a post-intervention variable in π with copy of the same node that

appears on the pre-intervention side, G+
S . We carry along the appropriate occurrence number for each

of these replaced nodes.
2. Continue by replacing any instances in which the same variable appears twice in a row with only one

copy of that variable. Then reduce the occurrence number of this variable by one and also do this for
all the variables that follow.

The portions of π′ that were created from π1 and π3 (portions of π in N+
S ) will also be unblocked since π1

and π3 are unblocked. What about the portion of π created from π2? This will correspond to a set of three
nodes where the center node is the one pointed to by π2, which we know is a directed edge pointing to some
post-intervention node, from the above discussion. The second edge in this triple must be pointing away from
the middle node, since all edges in π3 point toward Yd, and also must be part of a causal path from D to Y

in G+
S since the node came from the post-intervention side. But conditioning on nodes on causal paths from

D to Y constitutes a violation of ISAC, so we cannot condition on the center node without violating ISAC.
Therefore, this last portion of π′ is also unblocked, if it exists (it may not if there are no edges in π3). For
example, say that G+

S contains D → Y and D → Z → Y and sample selection is not connect to any other
node. Then suppose that π is taken to be D → Z ← UZ → Zd → Yd. Here π1 is D → Z ← UZ , π2 is the edge
between UZ and Zd, and π3 is Zd → Yd. So π′ is D → Z ← UZ → Z → Y . The node triple in π′ that does
not correspond to π1 or π3 is UZ → Z → Y . This is blocked since we condition on Z. However, conditioning
on Z is a violation of ISAC since Z lies on a causal path from D to Y in G+

S . All blocked versions of the
node triple in π′ that does not correspond to π1 or π3 must also violate ISAC for similar reasons. Since the
middle node in this node triple is pointed to by π2, the middle node must be a post-intervention node and so
it must lie on a causal path from D to Y in G+

S , and conditioning on it violates ISAC. Either the node triple
is unblocked or it isn’t. But, if it isn’t, then it could only have resulted from a violation of ISAC. So π′ is an
unblocked route. By Lemma B.2, π∗, the direct route of π′ in G+

S , is an unblocked path in G+
S .

[4. Possible cases for π∗ in G+
S and their relation to ISAC.]

So what are the types of π∗ we might see and how do these relate to ISAC?
• The easy case is when π∗ is a generalized non-causal path. Here we violate ISAC since Z does not block

every generalized non-causal path between D and Y that does not pass through S. Note that any time
π contains a bridge, π∗ will also contain a bridge and π∗ will be a generalized non-causal path.

• The case where π∗ is a causal path is somewhat more involved. We again assume that π∗ is a proper
causal path without loss of generality. The first edge in a π that would create a π∗ that is causal would
have to be an edge pointing away from some element of D. As we’ve discussed, π2 must have been
directed in π and pointed to a post-intervention node in (GS)D from a pre-intervention node in G+

S .
The pre-intervention node could not have been a descendant of D, otherwise it would be in the (GS)D
part of N+

S .
– If there are no node copies that are in both π1 and π3 (meaning π1 has a pre-intervention copy and

π3 has a post-intervention copy of the same node), then π∗ cannot be a proper causal path from D

to Y in G+
S . The only way it could be would be for the pre-intervention node to be a descendant

of D, a contradiction.
– If there are node copies that are in both π1 and π3, then the only way to reach the pre-intervention
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node from D is via a collider unblocked by our conditioning on some element of Z. This would
mean that the second node in π (and the second node in π∗) is an ancestor of Z, which violates
ISAC.

Lemma B.4. If Z d-separates D and Yd in N+
S , then {Z, S} d-separates D and Yd in NS.

Proof. We very closely follow the structure of the proof of Lemma 3 in the Web Appendix for Daniel et al.
(2012). We start by supposing that the statement that “If Z d-separates D and Yd in N+

S , then {Z, S}
d-separates D and Yd in NS .” is false. This means that, although all paths from D to Yd in N+

S are blocked
by Z, we can find a NS and a Z for which there is a path, ξ, in NS from D to Yd that is not blocked by
{Z, S}. The path ξ is also in N+

S since N+
S is NS but with edges added. No edges are removed in extending

NS to N+
S . If ξ is blocked after conditioning on Z in N+

S but is unblocked after conditioning on {Z, S} in NS ,
then either

• There must be a variable on the path ξ that is not in the set {Z, S} but the variable is a in Z. In this
way, this variable does not block ξ in NS but does block ξ in N+

S . But since Z is in {Z, S}, this is a
contradiction.

• There must be a collider on ξ that satisfies both of the following conditions. The collider is not in Z

and does not have descendants in Z. The collider is in {Z, S} or has descendants in {Z, S}. In this
way, ξ is blocked in N+

S and ξ is not blocked in NS . Clearly, the collider is S or an ancestor of S. But
we can see that ξ is identical to a generalized non-causal path, ξ′, in N+

S with the exception that the
immediate parents of the collider have a bridge between them on ξ′ and the collider does not appear
on ξ′. If ξ is unblocked in NS then ξ′ must be unblocked in N+

S . This is because none of the variables
along ξ is in {Z, S} possibly with the exception of the collider. If they were, then ξ would be blocked.
So ξ′ must be unblocked in N+

S , a contradiction.

Lemma B.5. If Z d-separates D and Y in G+
S , then {Z, S} d-separates D and Y in GS.

Proof. The same argument as in Lemma B.4 proves this result.

Lemma B.6. If {Z, S} d-separates D and Yd in NS, then Yd ⊥⊥ D|Z, S = 1 for every model inducing GS.

Proof. This follows from Lemma B.1.

Lemma B.7. If Yd ⊥⊥ D|Z, S = 1 for every model inducing GS, then p(Yd|S = 1) =
∑

z p(Y |D = d, Z =

z, S = 1)p(Z = z|S = 1), for every model inducing GS.

Proof.

p(Yd|S = 1) =
∑
z

p(Yd|Z = z, S = 1)p(Z = z|S = 1) by law of iterated expectations

=
∑
z

p(Yd|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1) by consistency
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B.3.2 Selection as a mediator

Lemma B.8. If Z satisfies ISAC in G+
S relative to D and Y and S is a mediator between D and Y (but S is

not also a descendant of another mediator), then Z d-separates D and Yd,S=1 in N+
S .

Proof. We rely on the proof of Lemma B.3, but with some caveats for the changes due to S being a mediator
between D and Y . See that proof for how the objects in this proof are defined. We consider whether there are
new types of open paths π that could connect D to Yd,S=1 in N+

S and if they exist whether they violate ISAC.
[π that contain a copy of S.] In the extended twin network for Yd,S=1, any path along which S appears

on the post-intervention side of the graph ((GS)D,S) has been severed since we intervene to set S = 1 in
addition to setting D = d. Again π (the assumed unblocked path from D to Yd,S=1 in N+

S ) is constructed from
three parts: π1 (an unblocked path in G+

S ), π3 (a causal path in (GS)D,S on which every node is a descendant
of D and/or S), and π2 (a single edge connecting π1 and π3 in N+

S ). This means that π must land in the
post-intervention side on a node that is downstream of S = 1 and/or of D = d. As in Lemma B.3, due to the
construction of N+

S we can focus on the generalized non-causal paths that circumvent the pre-interventional
S in G+

S as candidates for π1, rather than any such path that passes through the pre-intervention S. Any
path on which the pre-intervention S appears where it is not a collider is blocked. So π is not one of these.
The paths on the pre-intervention side on which S is a collider correspond to generalized non-causal paths on
which S is circumvented and that are blocked whenever the path on which S is a collider is blocked. Due
to our additional intervention on S = 1, conditioning on the pre-intervention S, and the bridges that we’ve
added, we can conclude that π will not contain either the pre- or post-interventional copy of S.

[π that do not contain a copy of S.] Are there any other ways that S as a mediator could add to the
cases we need to consider not already covered in Lemma B.3? Conditioning on pre-intervention S could open
generalized non-causal paths in the pre-intervention side that contain bridges. But if π contains a bridge,
then π∗ will also contain a bridge and so it will always be non-causal and hence violate ISAC. (Note that
we do not allow elements of Z to appear on causal paths or to be descendants of variables on causal paths,
whether or not S is on these paths.) Any remaining unblocked π would be of the types already covered by
Lemma B.3 and the same logic from the proof of Lemma B.3 will apply here.

Lemma B.9. If Z d-separates D and Yd,S=1 in N+
S , then {Z, S} d-separates D and Yd,S=1 in NS.

Proof. This proof is similar to that for Lemma B.4.

Lemma B.10. If {Z, S} d-separates D and Yd,S=1 in NS, then Yd,S=1 ⊥⊥ D|Z, S = 1 for every model inducing
GS.

Proof. This follows from Lemma B.1.

Lemma B.11. If Yd,S=1 ⊥⊥ D|Z, S = 1 for every model inducing GS, then p(YD=d,S=1|S = 1) =
∑

z p(Y |D =

d, Z = z, S = 1)p(Z = z|S = 1), for every model inducing GS.
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Proof.

p(Yd,S=1|S = 1) =
∑
z

p(Yd,S=1|Z = z, S = 1)p(Z = z|S = 1) by law of iterated expectations

=
∑
z

p(Yd,S=1|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd,S=1 ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1) by consistency

Lemma B.12. If S is a mediator between D and Y , then no set of observed variables, W , can d-separate
D and Yd (or Yd,Sd′ ) in N+

S , unless S is a deterministic function of observed variables. And so no set of
variables, W , (along with S) can d-separate D and Yd (or Yd,Sd′ ) in NS. Hence, the following do not hold for
every model inducing GS: Yd ̸⊥⊥ D|W,S = 1 and Yd,Sd′ ̸⊥⊥ D|W,S = 1.

Proof. We consider the simplest case in the graphs below. Since we see that we cannot d-separate D and
Yd (or Yd,Sd′ ) in N+

S in this simplest case, adding more edges and nodes will not change this. The second
statement follows from just looking at the twin network contained in the extended twin network here. The
last part of the lemma follows from Lemma B.1.
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B.3.3 Selection as a descendant of a mediator

Lemma B.13. If Z satisfies ISAC in G+
S relative to D and Y and S is a descendant of a mediator, M ,

between D and Y (but S is not also a mediator itself), then Z d-separates D and Yd,m in N+
S .

Proof. We rely on the proof of Lemma B.3 and Lemma B.8, but with some caveats for the changes due to S

being a descendant of a mediator between D and Y . See those proofs for how the quantities in this proof are
defined. Note that we are assuming that S is not itself a mediator between D and Y . We consider whether
there are new types of open paths π that could connect D to Yd,S=1 in N+

S and if they exist whether they
violate ISAC.

[π that contain a copy of S or post-intervention M .] Since S is a descendant of M , a mediator
between D and Y in G+

S , but S is not itself a mediator, in the extended twin network for Yd,m, N+
S , any path

on which S or M appear on the post-intervention side of the graph ((GS)D,M ) has been severed since we
intervene to set M = m and D = d, in addition to the fact that S is not a mediator itself. Again, π (the
assumed unblocked path from D to Yd,m in N+

S ) is constructed from three parts: π1 (an unblocked path in
G+

S ), π3 (a causal path in (GS)D,M on which every node is a descendant of D and/or M), and π2 (a single
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edge connecting π1 and π3 in N+
S ). This means that π must land in the post-intervention side on a node that

is downstream of M = m and/or of D = d. Further, any path containing a post-intervention version of S will
not end with Yd,m since S is not a mediator itself. As in Lemmas B.3 and B.8, due to the construction of N+

S

we can focus on the generalized non-causal paths that circumvent S in G+
S as candidates for π1, rather than

any such path that passes through S. So π will not contain either the pre- or post-interventional copy of S.
It will also not contain a post-interventional copy of M .

[π that contain pre-intervention M .] Let’s consider the cases in which π might have M on the
pre-intervention side. This means that any π in N+

S between D and Yd,m that contains M must have M in π1.
• If M is on a non-causal π∗ then we have a violation of ISAC.
• As in Lemma B.3, if M is on a causal π∗ then we will also find a violation of ISAC. π2, again, must

have been directed and pointed from a pre-intervention node to a post-intervention node and the
pre-intervention node could not have been a descendant of M , otherwise it would be in the ((GS)D,M )
part of N+

S . M would be on π1 and the first edge out of M must be an edge pointing away from M ,
since M only appears on π1 and π∗ is causal. If there are no node copies that are in both π1 and π3

(meaning π1 has a pre-intervention copy and π3 has a post-intervention copy of the same node), then
π∗ cannot be a proper causal path from D to Y in G+

S . The only way it could be would be for the
pre-intervention node to be a descendant of M , a contradiction. If there are node copies that are in
both π1 and π3, then the only way to reach the pre-intervention node from M is via a collider unblocked
by our conditioning on some element of Z. This would mean that the second node after M in π (and
the second node after M in π∗) is an ancestor of Z, which violates ISAC.

So any π on which M appears corresponds to a π∗ that violates ISAC.
Due to the above discussion, any generalized non-causal path on which M is an ancestor of Y in G+

S does
not need to be blocked by Z. This is because such paths cannot correspond to paths from D to Yd,m in N+

S

unless we condition on a Z that violates the fist condition of ISAC. This is because these paths point to the
pre-interventional Y and the post-interventional version of these paths is severed by our intervention setting
M = m.

Any remaining unblocked π would be of the types already covered by Lemmas B.3 and B.8 and the same
logic from the proofs of Lemmas B.3 and B.8 will apply here. Note that conditioning on M (that is including
it in Z) or variables that are on the same causal path that M is on are prohibited by ISAC.

Lemma B.14. If Z d-separates D and Yd,m in N+
S , then {Z, S} d-separates D and Yd,m in NS.

Proof. This proof is similar to that for Lemma B.4.

Lemma B.15. If {Z, S} d-separates D and Yd,m in NS, then Yd,m ⊥⊥ D|Z, S = 1 for every model inducing
GS.

Proof. This follows from Lemma B.1.

Lemma B.16. If Z satisfies ISAC in G+
S relative to D and Y and S is a descendant of a mediator, M ,

between D and Y (but S is not also a mediator itself), then {Z,D} d-separates M and Yd,m in N+
S .

49



[DRAFT]

Proof. We will again show the contrapositive: assuming we are conditioning on Z and D, we show that any
unblocked path from M to Yd,m in N+

S , ϕ, means there is an unblocked path from D to Yd,m in N+
S (where

we only condition on Z), π, which implies that ISAC is violated in G+
S relative to D and Y based on Lemma

B.13.
We can connect any ϕ that starts with an arrow into M (i.e., M ← . . . Yd,m or M ↔ . . . Yd,m) to

D → · · · →W → · · · →M to create π since M in this case is a collider and we condition on S, a descendant
of M ; and we cannot condition on any node like W on D → · · · →W → · · · →M since W would also be on
causal paths from D to Y , since M is a mediator, which would be a violation of ISAC. Note that this also
holds when M is a direct descendant of D: D →M can be connected to ϕ and since M is a collider between
D and some variable on ϕ, there is an open π. We can similarly connect any ϕ that starts with a bridge
touching M (i.e., M . . . Yd,m) can be connected to D → · · · →W → · · · →M to create π since bridges do
not create colliders. Any path with an arrow pointing out of M (i.e., M → . . . ) can only end at Yd,m after
traversing a bridge or a collider that has been conditioned on, since M is a pre-intervention node but Yd,m is
a descendant of the intervention M = m not of M . In both of these cases, this path can also be connected
with D → · · · → W → · · · → M to create π. The key is that ϕ is an open path from M to Yd,m and so it
can be linked to the causal path from D to M (which cannot be blocked without violating ISAC). Any such
unblocked path π from D to Yd,m in N+

S (where we only condition on Z) violates ISAC following Lemma
B.13.

Conditioning on D blocks any open paths between D and Yd,m that could be connected to the causal path
from D to M to create an open path between M and Yd,m. Could conditioning on D create an open ϕ from
M to Yd,m without there also being an open π between D and Yd,m? This could only happen if conditioning
on D opened a previously closed path, otherwise, no additional paths are opened by conditioning on D (in
addition to Z) and we’re in the situation above where any ϕ between M and Yd,m can be used to create a π

between D and Yd,m. Conditioning on D (in addition to Z) would only open paths between M and Yd,m if D
is a collider on such paths. This would mean that there would have to be an open path between D and M

that ends with an arrow into D as well as an open path between D and Yd,m that ends with an arrow into D.
But any open path between D and Yd,m that ends with an arrow into D is an open π that, as we’ve seen,
would violate ISAC. Note that conditioning on M (that is including it in Z) or variables that are on the same
causal path that M is on are prohibited by ISAC.

Lemma B.17. If {Z,D} d-separates M and Yd,m in N+
S , then {Z,D, S} d-separates M and Yd,m in NS.

Proof. This proof is similar to that for Lemma B.4.

Lemma B.18. If {Z,D, S} d-separates M and Yd,m in NS, then Yd,m ⊥⊥ M |D,Z, S = 1 for every model
inducing GS.

Proof. This follows from Lemma B.1.

Lemma B.19. If Yd,m ⊥⊥ D|Z, S = 1 and Yd,m ⊥⊥ M |D,Z, S = 1 for every model inducing GS, then
p(Yd,m|S = 1) =

∑
z p(Y |D = d,M = m,Z = z, S = 1)p(Z = z|S = 1), for every model inducing GS.
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Proof.

p(Yd,m|S = 1) =
∑
z

p(Yd,m|Z = z, S = 1)p(Z = z|S = 1) by law of iterated expectations

=
∑
z

p(Yd,m|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd,m ⊥⊥ D|Z, S = 1

=
∑
z

p(Yd,m|D = d,M = m,Z = z, S = 1)p(Z = z|S = 1) by Yd,m ⊥⊥M |D,Z, S = 1

=
∑
z

p(Y |D = d,M = m,Z = z, S = 1)p(Z = z|S = 1) by consistency

Lemma B.20. If S is a descendant of a mediator, M , between D and Y , then no set of observed variables, W ,
can d-separate D and Yd (or Yd,Md′ ) in N+

S , unless S is a deterministic function of observed variables. And
so no set of variables, W , (along with S) can d-separate D and Yd (or Yd,Md′ ) in NS. Hence, the following do
not hold for every model inducing GS: Yd ̸⊥⊥ D|W,S = 1 and Yd,Sd′ ̸⊥⊥ D|W,S = 1.

Proof. We consider the simplest case in the graphs below. Since we see that we cannot d-separate D and
Yd (or Yd,Md′ ) in N+

S in this simplest case, adding more edges and nodes will not change this. The second
statement follows from just looking at the twin network contained in the extended twin network here. The
last part of the lemma follows from Lemma B.1.
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B.3.4 Generalization

Lemma B.21. If a set of nodes Z in G+
S satisfies GC relative to D (treatment) and Y (outcome) and S is

not a mediator or descendant of a mediator between D and Y , then ZExt d-separates S and Yd in N+
S .

Proof. We take a similar approach as in the proof of Lemma B.3. We will show the contrapositive: assuming
that we are conditioning on Z, which includes ZExt, an unblocked path from S to Yd in N+

S implies that GC
is violated in G+

S relative to D and Y .
• We define π like in Lemma B.3: We start by assuming that, assuming we are conditioning on Z, there is

an unblocked path, π, from S to Yd in N+
S . Like in Lemma B.3, we can consider π that do not contain

the pre-interventional S, though π may contain bridges in π1. Since we have assumed that sample
selection is not a mediator or a descendant of a mediator, post-intervention versions of S will not appear
on π3 if they exist at all in N+

S .
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• As in in Lemma B.3, we can create a π′ that is an unblocked route in G+
S and π∗, the direct route of π′

in G+
S , is an unblocked path in G+

S .
• Now, let’s consider the types of paths that π∗ could be.

– π∗ that do not end in a causal path from D to Y violate of GC.
– For π∗ that do end in a causal paths from D to Y , we want to show that these would imply

contradictions for π or violate GC.
∗ How can we have D on π∗? This could only result from the pre-intervention side copy of D

appearing on π, since no edges point into D = d, no bridges can connect to D = d, and π

must land downstream of D = d on the post-intervention side.
∗ So how can the pre-intervention side copy of D appear on π? This could only result from a

non-causal or causal path from S to D, where both are on the pre-intervention side. So this
non-causal or causal path from S to D is entirely on the pre-intervention side and, therefore,
is part of π1.

∗ Then the question becomes: how can we get a causal path from D to Y in π∗, when D is
pre-intervention and Yd is post-intervention on π? From here we can follow the logic in the
section bullet of part 4. of the proof of Lemma B.3, which shows us that this either results in
a contradiction or violates GC since it violates ISAC.

Lemma B.22. If ZExt d-separates S and Yd in N+
S , then ZExt d-separates S and Yd in NS.

Proof. We start by supposing that the statement "If ZExt d-separates S and Yd in N+
S , then ZExt d-separates

S and Yd in NS ." is false. This means that although all paths from S to Yd in N+
S are blocked by ZExt, we can

find a NS and a ZExt for which there is a path, ξ, in NS from S to Yd that is not blocked by ZExt. Without
loss of generality, we assume that ξ only intersects S at the endpoint. N+

S is identical to NS except for N+
S

contains bridges created as a result of conditioning on S. Bridges are added to NS between all variables
between which S is a collider or an ancestor of S is a collider resulting in N+

S . If ξ is unblocked in NS , then ξ

traverses no bridges, since bridges do not appear in NS . The path ξ is also in N+
S and is unblocked since N+

S

is NS but with edges added and we are conditioning on the same set of nodes, ZExt, in both. No edges are
removed in extending NS to N+

S . In this way, N+
S "contains" all of NS . But an unblocked path between S

and Yd in N+
S is a contradiction.

Lemma B.23. If ZExt d-separates S and Yd in NS, then Yd ⊥⊥ S|ZExt for every model inducing GS.

Proof. This follows from Lemma B.1.

Lemma B.24. If ZExt ⊂ Z and ZInt = Z − ZExt, Yd ⊥⊥ S|ZExt, and Yd ⊥⊥ D|Z, S = 1 for every model
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inducing GS, then, for every model inducing GS,

p(Yd|S = 1) =
∑
z

p(Yd|Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt|S = 1)

=
∑
z

p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt|S = 1)

and p(Yd) =
∑
z

p(Yd|Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt)

=
∑
z

p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt).

Proof.

p(Yd|S = 1) =
∑
z

p(Yd|Z = z, S = 1)p(Z = z|S = 1)

=
∑
z

p(Yd|D = d, Z = z, S = 1)p(Z = z|S = 1) by Yd ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(Z = z|S = 1) by consistency

=
∑
z

p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt|S = 1)

p(Yd) =
∑
zExt

p(Yd|ZExt = zExt)p(ZExt = zExt)

=
∑
zExt

p(Yd|ZExt = zExt, S = 1)p(ZExt = zExt) by Yd ⊥⊥ S|ZExt

=
∑
zExt

[∑
zInt

p(Yd, ZInt = zInt|ZExt = zExt, S = 1)

]
p(ZExt = zExt)

=
∑
zExt

[∑
zInt

p(Yd|ZInt = zInt, ZExt = zExt, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)

]
p(ZExt = zExt)

=
∑
z

p(Yd|Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt)

=
∑
z

p(Yd|D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt) by Yd ⊥⊥ D|Z, S = 1

=
∑
z

p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt) by consistency

B.4 Theorems

Theorem B.1. If a set of nodes Z in internal selection graph G+
S satisfies ISAC relative to D (treatment)

and Y (outcome) and S is not a mediator or descendant of a mediator between D and Y , then, for every
model inducing GS, Yd ⊥⊥ D|Z, S = 1 and we can then identify p(Yd|S = 1) =

∑
z p(Y |d, z, S = 1)p(z|S = 1),

all of which is estimable from the selected sample alone.

Proof. Lemmas B.3, B.4, B.6, and B.7 prove the result.
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Theorem B.2. If a set of nodes Z in internal selection graph G+
S satisfies ISAC relative to D (treatment)

and Y (outcome) and S is a mediator between D and Y (but S is not also a descendant of another mediator),
then, for every model inducing GS, Yd,S=1 ⊥⊥ D|Z, S = 1 and we can then identify p(Yd,S=1|S = 1) =∑

z p(Y |d, z, S = 1)p(z|S = 1), all of which is estimable from the selected sample alone. Further note that, for
any set of observables, W , Yd ̸⊥⊥ D|W,S = 1 and Yd,Sd′ ̸⊥⊥ D|W,S = 1, unless S is a deterministic function
of observed variables.

Proof. Lemmas B.8, B.9, B.10, B.11, and B.12 prove the result.

Theorem B.3. If a set of nodes Z in internal selection graph G+
S satisfies ISAC to D (treatment) and

Y (outcome), where S is a descendant of an observed mediator, M , between D and Y (but S is not also
a mediator itself), then, for every model inducing GS, Yd,m ⊥⊥ D|Z, S = 1 and Yd,m ⊥⊥ M |D,Z, S = 1,
where M = m is a value observed in the sample. We can then identify, for every model inducing GS,
p(Yd,m|S = 1) =

∑
z p(Y |d,m, z, S = 1)p(z|S = 1), all of which is estimable from the selected sample alone.

Further note that, for any set of observables, W , Yd ̸⊥⊥ D|W,S = 1 and Yd,Md′ ̸⊥⊥ D|W,S = 1, unless S is a
deterministic function of observed variables.

Proof. Lemmas B.13, B.14, B.15, B.16, B.17, B.18, B.19, and B.20 prove the result.

If S is both a mediator and a descendant of a mediator (M) between D and Y , then we might consider
potential outcomes of the form Yd,m,S=1 (intervening to set D = d, M = m, and S = 1) and something
like these theorems should hold. We do not demonstrate this for brevity. The following result concerning
generalization translates the results in Correa et al. (2018) to use potential outcomes.

Theorem B.4. If a set of nodes Z in G+
S satisfies GC relative to D (treatment) and Y (outcome) and S

is not a mediator or descendant of a mediator between D and Y , then Yd ⊥⊥ D|Z, S = 1 and Yd ⊥⊥ S|ZExt.
We can identify p(Yd) =

∑
z p(Y |D = d, Z = z, S = 1)p(ZInt = zInt|ZExt = zExt, S = 1)p(ZExt = zExt), where

ZInt = Z − ZExt.

Proof. Theorem B.1 and Lemmas B.21, B.22, B.23, and B.24 prove the result.

B.5 IPW estimation

Following related discussions in Hernán and Robins (2006); VanderWeele (2009); Correa et al. (2018);
Hernán and Robins (2020) and elsewhere, we present IPW estimators for E[Yd|S = 1], E[Yd,S=1|S = 1], and
E[Yd,m|S = 1]. These are familiar results but tailored to our internal validity for the selected sample focus.

If Yd ⊥⊥ D|Z, S = 1 (following an application of ISAC) and we have SUTVA, consistency, and positivity,
then we can show that, by the law of large numbers, the IPW estimator

µ̂d =
1

n

n∑
i=1

Yi × 1Di=d

p̂(Di = d|Zi = z, S = 1)

is consistent for E[Yd|S = 1] when the propensity score model p̂(Di = d|Zi = z, S = 1) is correctly specified:
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E[Yd|S = 1] =
∑
y

y × p(Yd = y|S = 1)

=
∑
y

∑
z

y × p(Y = y|D = d, Z = z, S = 1)p(Z = z|S = 1) by Lemma B.7

=
∑
y

∑
z

y × p(Y = y,D = d|Z = z, S = 1)

p(D = d|Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,D = d, Z = z|S = 1)

p(D = d|Z = z, S = 1)

=
∑
y

∑
z

∑
d

y × 1D=d ×
p(Y = y,D = d, Z = z|S = 1)

p(D = d|Z = z, S = 1)

= E
[

Y × 1D=d

p(D = d|Z = z, S = 1)
|S = 1

]
= E[µ̂d|S = 1]

If Yd,S=1 ⊥⊥ D|Z, S = 1 and we have SUTVA, consistency, and positivity, then we can show that, by the law
of large numbers, the IPW estimator µ̂d is consistent for E[Yd,S=1|S = 1] when the propensity score model
p̂(D = d|Z = z, S = 1) is correctly specified:

E[Yd,S=1|S = 1] =
∑
y

y × p(Yd,S=1 = y|S = 1)

=
∑
y

∑
z

y × p(Y = y|D = d, Z = z, S = 1)p(Z = z|S = 1) by Lemma B.11

=
∑
y

∑
z

y × p(Y = y,D = d|Z = z, S = 1)

p(D = d|Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,D = d, Z = z|S = 1)

p(D = d|Z = z, S = 1)

=
∑
y

∑
z

∑
d

y × 1D=d ×
p(Y = y,D = d, Z = z|S = 1)

p(D = d|Z = z, S = 1)

= E
[

Y × 1D=d

p(D = d|Z = z, S = 1)
|S = 1

]
= E[µ̂d|S = 1]

If Yd,m ⊥⊥ D|Z, S = 1 and Yd,m ⊥⊥M |D,Z, S = 1 and we have SUTVA, consistency, and positivity, then we
can show that, by the law of large numbers, the IPW estimator

µ̂d,m =
1

n

n∑
i=1

Yi × 1Mi=m × 1Di=d

p̂(Mi = m|Di = d, Zi = z, S = 1)p̂(Di = d|Zi = z, S = 1)

is consistent for E[Yd,m|S = 1] when the propensity score model p̂(Di = d|Zi = z, S = 1) and the mediator
model p̂(Mi = m|Di = d, Zi = z, S = 1) are correctly specified:
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E[Yd,m|S = 1] =
∑
y

y × p(Yd,m = y|S = 1)

=
∑
y

∑
z

y × p(Y = y|D = d,M = m,Z = z, S = 1)p(Z = z|S = 1) by Lemma B.19

=
∑
y

∑
z

y × p(Y = y,M = m|D = d, Z = z, S = 1)

p(M = m|D = d, Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,M = m|D = d, Z = z, S = 1)

p(M = m|D = d, Z = z, S = 1)

p(D = d|Z = z, S = 1)

p(D = d|Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,M = m,D = d|Z = z, S = 1)

p(M = m|D = d, Z = z, S = 1)p(D = d|Z = z, S = 1)
p(Z = z|S = 1)

=
∑
y

∑
z

y × p(Y = y,M = m,D = d, Z = z|S = 1)

p(M = m|D = d, Z = z, S = 1)p(D = d|Z = z, S = 1)

=
∑
y

∑
z

∑
m

∑
d

y × 1M=m × 1D=d ×
p(Y = y,M = m,D = d, Z = z|S = 1)

p(M = m|D = d, Z = z, S = 1)p(D = d|Z = z, S = 1)

= E
[

Y × 1M=m × 1D=d

p(M = m|D = d, Z = z, S = 1)p(D = d|Z = z, S = 1)
|S = 1

]
= E[µ̂d,m|S = 1]

B.6 Conditioning on a collider

Shahar and Shahar (2017) discuss the conditions under which an association is created between the parents
of a collider when the collider is conditioned on for discrete variables. They show that, “[i]f [D] and [U ] are
marginally independent causes of [S], then [D] and [U ] are dependent conditional on [S = 1] if and only if
[D] and [U ] modify each other’s effects on [S = 1].” These authors define effects on the collider as well as
effect modification in terms of probability ratios. Section B.7 of Appendix B further shows that non-zero
interaction information is a requirement for dependency to be created between two marginally independent
parents of a collider, when the collider is conditioned on. Also relevant to the discussion in the present paper,
Shahar and Shahar (2017) show that for marginally independent causes D,U of a binary collider S, if the
effects of D and U on S are not null, then D,U modify each other’s effects in at least one stratum of S and
are dependent in at least one stratum of S.

Using our working example, let us consider what would be required for the parents of the sample selection
node to remain independent after stratifying to S = 1. Simplifying the example inspired by Knox et al. (2020),
we consider how the effect of police perception of majority vs minority race (D ∈ {majority,minority}) on
police making a stop or not (S ∈ {0, 1}) might be modified by an unobserved factor that represents police
officer stress levels (U ∈ {high, low}). Following Shahar and Shahar (2017), we consider the probability ratios
in (1):

p(S = 1|D = majority, U = high)
p(S = 1|D = minority, U = high)

?
=

p(S = 1|D = majority, U = low)

p(S = 1|D = minority, U = low)
(1)

The left hand side of (1) is the effect of police perception of race on police making a stop when police
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officers are under high stress. The right hand side of (1) is the effect of police perception of race on police
making a stop when police officers are under low stress. Police officer stress not modifying the effect of police
perception of race on police making a stop would mean that the left and right hand sides of (1) are equal.
Under what circumstances would this occur?

The simplest scenario would be when people perceived to be from the majority racial group are never
stopped. That is, the numerators on both sides of (1) are zero: p(S = 1|D = majority, U = high) = 0

and p(S = 1|D = majority, U = low) = 0. This would make both probability ratios zero, meaning no
effect moderation. This is clearly an absurd scenario. The other case would be when the two probability
ratios perfectly balance, meaning that there is no effect moderation. This is also not likely; police officer
stress levels likely do modify the effect of perceptions of race on making a stop in some way. But if
one of these scenarios holds, following Shahar and Shahar (2017)’s result quoted above it can be shown
that p(D = majority|U = high, S = 1) = p(D = majority|S = 1). We demonstrate this in full below.
That is, police perception of race is independent of police stress levels, despite stratifying to S = 1, if
one the the two (unrealistic) scenarios holds. Further, if one the the two scenarios holds and so long as
p(S = 1|D = minority, U = high) ̸= p(S = 1|D = minority, U = low) (i.e., there is an effect from police
officer stress), then we would see that the two sides of (2) are not equal, meaning there is effect moderation
and hence police perception of race is dependent on police stress levels, stratifying to S = 0.

p(S = 0|D = majority, U = high)
p(S = 0|D = minority, U = high)

?
=

p(S = 0|D = majority, U = low)

p(S = 0|D = minority, U = low)
(2)

Practitioners would only know that they’re in the setting in which stratifying to S = 1 does not create
association between the parents of S if they have detailed knowledge of the selection mechanism, like the
unrealistic scenarios above. In such a situation, even if the parents of the sample selection node are dependent
due to selection, the practitioner could use inverse probability of selection weighting to estimate unbiased
effects. (Thompson and Arah, 2014) But we emphasize that such knowledge is hard to come by and the
assumptions required to fall into such a setting will often be absurd.

We follow Shahar and Shahar (2017) to show that p(D = majority|U = high, S = 1) = p(D = majority|S =

1). In the derivation below, we abbreviate “majority” as “ma” and “minority” as “mi.” We rely on the fact
that there is no effect moderation to show this. First note that we can write

p(S = 1|D = ma, U = high)
p(S = 1|D = mi, U = high)

=
p(S = 1|D = ma, U = high)p(U = high|D = ma)
p(S = 1|D = mi, U = high)p(U = high|D = mi)

=
p(S = 1, U = high|D = ma)
p(S = 1, U = high|D = mi)

Next we show that we can write

p(S = 1|D = ma, U = high)
p(S = 1|D = mi, U = high)

=
p(S = 1|D = ma, U = high)
p(S = 1|D = mi, U = high)

p(S = 1, U = high|D = mi)
p(S = 1|D = mi)

+
p(S = 1|D = ma, U = low)

p(S = 1|D = mi, U = low)

p(S = 1, U = low|D = mi)
p(S = 1|D = mi)

=
p(S = 1, U = high|D = ma)
p(S = 1, U = high|D = mi)

p(S = 1, U = high|D = mi)
p(S = 1|D = mi)

+
p(S = 1, U = low|D = ma)
p(S = 1, U = low|D = mi)

p(S = 1, U = low|D = mi)
p(S = 1|D = mi)

=
p(S = 1, U = high|D = ma)

p(S = 1|D = mi)
+

p(S = 1, U = low|D = ma)
p(S = 1|D = mi)

=
p(S = 1|D = ma)
p(S = 1|D = mi)
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Finally, we show that

p(D = majority|U = high, S = 1)

=
p(S = 1|D = ma, U = high)p(D = ma|U = high)

p(S = 1|U = high)

=
p(S = 1|D = ma, U = high)p(D = ma|U = high)

p(S = 1|D = ma, U = high)p(D = ma|U = high) + p(S = 1|D = mi, U = high)p(D = mi|U = high)

=
p(S = 1|D = ma, U = high)p(D = ma)

p(S = 1|D = ma, U = high)p(D = ma) + p(S = 1|D = mi, U = high)p(D = mi)

= p(D = ma)
[
p(S = 1|D = ma, U = high)
p(S = 1|D = ma, U = high)

p(D = ma) +
p(S = 1|D = ma, U = high)
p(S = 1|D = mi, U = high)

p(D = mi)
]−1

= p(D = ma)
[
p(S = 1|D = ma)
p(S = 1|D = ma)

p(D = ma) +
p(S = 1|D = ma)
p(S = 1|D = mi)

p(D = mi)
]−1

from above

=
p(S = 1|D = ma)p(D = ma)

p(S = 1|D = ma)p(D = ma) + p(S = 1|D = mi)p(D = mi)

=
p(S = 1|D = ma)p(D = ma)

p(S = 1)

= p(D = majority|S = 1)

B.7 Colliders and interaction information

We draw on discussion of interaction information and colliders from Ghassami and Kiyavash (2017) (also
see McGill (1954)) to show that zero interaction information for marginally independent random variables
implies continued independence conditional on a collider. Section B.6 of Appendix B further discusses collider
stratification in the context of our working example. Suppose we have two random variables X1, X2 and
variable S that is a collider between X1, X2: X1 → S ← X2. Interaction information is a generalization
of mutual information to the case when there are multiple variables. See Cover and Thomas (2006) for an
introduction to mutual information. We can write interaction information as (Ghassami and Kiyavash, 2017)

MI(S;X1;X2) = MI(X1;X2)−MI(X1;X2|S)

= MI(S;X1)−MI(S;X1|X2)

= MI(S;X2)−MI(S;X2|X1)

Using the first expression for interaction information above, we see that MI(X1;X2|S) = MI(X1;X2) −
MI(S;X1;X2). It is trivial to see that, MI(S;X1;X2) = 0 means that MI(X1;X2|S) = MI(X1;X2). Meaning
that zero interaction information implies that there is no change in mutual information between X1, X2 when we
condition on the collider between them. For marginally independent X1, X2, MI(X1;X2|S) = −MI(S;X1;X2)

and so if MI(S;X1;X2) = 0 =⇒ MI(X1;X2|S) = 0. Meaning that zero interaction information implies that
conditional on the collider, X1, X2 remain independent.
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Another view of interaction information is possible by writing

MI(S; [X1, X2]) = MI(S;X2) + MI(S;X1|X2)

=⇒ MI(S; [X1, X2])−MI(X1;S)−MI(X2;S) = MI(S;X2) + MI(S;X1|X2)−MI(S;X1)−MI(S;X2)

= −(MI(S;X1)−MI(S;X1|X2))

= −MI(S;X1;X2)

=⇒ MI(X1;S) + MI(X2;S)−MI(S; [X1, X2]) = MI(S;X1;X2)

where MI(S; [X1, X2]) = MI(S;X2) + MI(S;X1|X2) captures the information that X1, X2 jointly share with
S. Interaction information would be zero when MI(X1;S) +MI(X2;S) equals MI(S; [X1, X2]). That is, when
the information that X1, X2 jointly share with S is exactly equal to the the mutual information between X1

and S added to the mutual information between X2 and S. This would arise when the information shared
between X1 and S does not overlap with the information shared between X2 and S.

We include this discussion only to show that conditioning on a collider does not necessarily
lead to mutual information (and therefore dependence) between marginally independent parents
of the collider or a change in the mutual information between marginally dependent parents of
the collider. We’ve shown that it does not precisely when interaction information is zero.

A few additional notes on interaction information. If X1 and X2 are marginally independent causes of S,
one might be tempted to think of interaction information as arising through the “interaction” between X1

and X2 in determining S, since no shared information existed marginally. However, interaction information
can be difficult to interpret and what is meant by this “interaction” is not necessarily what we might expect.
See a Krippendorff (2009) for a discussion of these difficulties, including that interaction information can be
negative.

The “interaction” is not necessarily something like an interaction term in a linear model. It is easy to show
that for Gaussian random variables X1 ∼ N (0, 1), X2 ∼ N (0, 1), ϵ ∼ N (0, 1), and S = X1+X2+ϵ, where there
is no interaction term X1×X2 in the data generating process for S, there is still non-zero interaction information
between X1, X2, S. This arises from the simple fact that mutual information for Gaussians has the following
relationship with R2’s: MI(A;B) = −1

2 log(1−R2
A,B). (Cover and Thomas, 2006) From above, we know that

MI(S;X1;X2) = MI(X1;S)+MI(X2;S)−MI(S; [X1, X2]). From the relationship between mutual information
and R2, we have that MI(X1;S) = −1

2 log(1−R
2
X1,S

) = −1
2 log(1−

1
3) ≈ 0.203 and similarly, MI(X2;S) ≈ 0.203.

However MI(S; [X1, X2]) = −1
2 log(1−R2

S,X1+X2
) = −1

2 log(1−
2
3) ≈ 0.55 ̸= 0.406 ≈ MI(X1;S) + MI(X2;S).

So we see that interaction information is non-zero, this in turn means conditional mutual information is

non-zero, i.e. MI(X1;X2|S) ̸= 0. The partial R2, R2
X1,X2|S =

(
RX1,X2

−RX1,S
RX2,S√

1−R2
X1,S

√
1−R2

X2,S

)2

=
R2

X1,S
R2

X2,S

(1−R2
X1,S

)(1−R2
X2,S

)
=

( 1
3
)2

(1− 1
3
)2

= 1
4 , is also not zero.

We note two additional interesting cases. First, even if MI(X1;S) and R2
X1,S

are zero, we can have
non-zero interaction information, conditional mutual information and partial R2 if the zeroes are due to
perfect balancing of the path coefficients (e.g., X1 ∼ N (0, 1), ξ ∼ N (0, 1), ϵ ∼ N (0, 1), X2 = X1 + ξ

and S = −X1 + X2 + ϵ). Second, even when R2
X1,X2|S and MI(X1;X2|S) are zero, we can have non-zero

interaction information. The zero R2
X1,X2|S could be due to perfect balancing between non-zero RX1,X2 and
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RS,X1 , and RS,X2 , which coincides with zero MI(X1;X2|S) due to perfect balancing between non-zero mutual
information MI(X1;X2) and interaction information MI(S;X1;X2). For example, if the data generating
process is X1 ∼ N (0, 1), ξ ∼ N (0, 1), ϵ ∼ N (0, 1), X2 = γX1+ ξ and S =

√
γX1+

√
γX2+ ϵ. In this example

the marginal dependency between X1 and X2 is eliminated when we condition on S.

B.8 Edges with unknown direction

What should researchers do when they do not know whether one variable causes a second variable or if it is
the other way around? Can this sort of structural uncertainty be allowed? How might we handle it? First,
recall that uncertainty about whether two variables are directly causally related at all should captured by
including an edge between these variables, since an included edge can represent a large, a small, or even a null
relationship but the absence of an edge can only represent a null relationship. In this way, excluding edges
from a graph represents strong causal assumptions. Similarly, even when we know whether two variables
are directly causally related, we might not know whether there is some variable that is a common direct
cause to both. Accordingly, we should include a bidirected edge between the two variables, unless we can
rule out common direct causes. Now, consider instances when we cannot rule out that two variables are
directly related (regardless of whether they also share a common direct cause) but we do not know which
variable causes which. In terms of our causal graph, this means we do not know which direction the direct
edge between the two variables should point. As such we will represent this type of structural uncertainty
with an solid undirected edge ( ; associations created due to sample selection are represented with dashed
undirected edges, which we call bridges).

A graph with such solid undirected edges should be thought of as a set of DAGs. Every DAG in this
set shares the same verticies, directed edges, and bidirected edges, but there is a DAG for each possible
combination of edge directions for the solid undirected edges.40 When we are uncertain about the direction
of some set of edges in our causal graph, we want to know if there is a set of covariates that might allow
us to identify our causal effect of interest in all the DAGs in the set represented by our causal graph. This
means that in each of the DAGs we could extend them to be internal selection graphs and the same set of
covariates would satisfy ISAC in each of these internal selection graphs. As might be clear, this will be a more
demanding requirement than simply finding a covariate set that satisfies ISAC in a single internal selection
graph corresponding to a single DAG. Of course, there are situations in which the uncertainty about edge
directions limits our ability to identify causal quantities. See 13(a) for a simple example; in only one of the
represented DAGs can we identify p(Yd|S = 1). There are settings in which ambiguity over whether a path is
causal or non-causal; and so it is unclear whether variables should be adjusted for or not. See 13(b); in one
of the represented DAGs we should adjust for A but not in the other. There are settings in which it is not
clear whether we are able to identify p(Yd|S = 1) or p(Yd,S=1|S = 1). See 13(c); since it is unclear if S is a
mediator or not, we do not know what sort of causal quantity we might be able to identify. Multiple of such
problems might arise. See 13(d).

Our first suggestion is simple. When it is feasible, researchers should draw all possible DAGs in the
set represented by their causal graph with undertain edge directions. These should then be extended into

40Some combinations of these edge directions might create cycles; these combinations should not be considered since they are
not DAGs.
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Figure 13: Examples of Edges with Uncertain Direction
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internal selection graphs. They can then evaluate if there is a covariate set that will satisfy ISAC in all of
the represented graphs. Drawing all possible graphs will force the researcher to consider the alternatives
carefully and explicitly; this will make clear what is and is not identifiable in light of the structural uncertainty.
Naturally, this will only be feasible for causal graphs with relatively few edges of unknown direction. As
the number of edges of uncertain direction increases, the need for a more abbreviated approach that allows
for uncertain edge directions increases.41 While this is true, it is also likely that, as the number of edges of
uncertain direction increases, so does the likelihood that the causal quantitiy of interest will not be possible
to identify, since uncertain edge directions are limitations on the causal knowledge with which we imbue the
causal model. But we’d still like to have a systematic approach for these settings.

When there are many edges of uncertain direction, we might ask "is there a way to quickly determine that
my causal quantity of interest is not identifiable?" In this spirit, our second suggestion is that researchers
take an adversarial approach to finding a set of covariates that would identify their causal quantity. That is,
can we find two internal selection graphs, represented by the causal graph with uncertain edge directions,
that have conflicting conclusions about identifiability? Or can we find at least one such internal selection
graph in which the causal quantity is not identifiable?42 To that end, we suggest that researchers look for the
following cases in their causal graphs with uncertain edge directions.

1. Sample selection on a possibly causal path:43 we will not know which of p(Yd|S = 1) or p(Yd,S=1|S = 1)

is identifiable.
2. Possibility that a path could run from Y to D: this means that we don’t know if the treatment causes

the outcome or the outcome causes the treatment.
3. Causal paths that start with a solid undirected edge out of the treatment: this leads to uncertainty

about whether paths are causal (and should not be blocked) or non-causal (and should be blocked).
4. At least one internal selection graph in which identifiability is impossible: see Table 3 for examples.

Just one such graph means that we cannot identify the causal quantity of interest.
5. Conflicts between internal selection graphs over which covariate adjustment set would block the non-

causal paths: just one such conflict means that we cannot identify the causal quantity of interest. For
example, in the graph D ↔ A Y with D → Y (assume S is not causally related to D,A, Y ), one

41There are existing approaches for graphs with uncertain edge directions, but these do not explicitly include sample selection.
See Perković et al. (2017).

42We urge caution here. Researchers must resist the temptation to assign certain edge directions where evidence and expertise
does not allow it. Simply asserting edge directions to have a graph in which the target causal quantity is identifiable does not
actually mean this quantity is identifiable in reality. As ever, assumptions must be defended not just asserted.

43A possibly causal path is one on which there are directed edges and at least one solid undirected edge, but all directed edges
point away from D toward Y . No bidirected edges or bridges are allowed on possibly causal paths.
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internal selection graph requires us to adjust for A and the other requires that we do not adjust for A

to identify p(Yd|S = 1).
These will all present problems for identifiability or clear interpretation. If such problems arise, then

you know identification or clear interpertability will not be possible. When drawing all represented internal
selection graphs is infeasible and we cannot quickly see that identifiablility or clear interpretation is not
possible, we might want a formal adjustment criterion for identification of internal causal quantities that
allows for uncertain edge directions. Zhang (2008); Maathuis and Colombo (2015); Perković et al. (2017)
provide formal criteria for dealing with unknown edge directions but without explicitly considering sample
selection.44 In practice, we believe that the two suggestions above will serve the needs of many researchers.

44A formal criterion that allows for uncertain edge directions, in addition to explicitly incorporating sample selection, is beyond
the scope of this paper, but would be an interesting direction for future work.
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