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What is probability?

Probability is a mathematical construct to represent processes in the real world that
involve randomness or uncertainty.

Consider a random process that selects an outcome from a set of possible outcomes.

The probability of an event A occurring represents how frequently A would occur among
many repetitions of the process. (Frequentist view)

An alternative interpretation is that the probability of an event A occurring represents a
degree of belief in a proposition. (Bayesian view)

We’ll take the frequentist view for this discussion.
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Recommended resources

These slides focus on probability, random variables, and relationships between random
variables. We will not be dealing with data, estimation, or statistics.

Useful resources

• Foundations of Agnostic Statistics - Aronow and Miller (2019) [link] - part 1

• Causal Inference: the Mixtape - Cunningham (2021) [link] - chapter 2

• Statistical Rethinking (Videos) - McElreath (2022) [link] - these take a Bayesian
perspective

These slides draw heavily from Aronow and Miller (2019).
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https://www.cambridge.org/core/books/foundations-of-agnostic-statistics/684756357E7E9B3DFF0A8157FB2DCECA
https://mixtape.scunning.com/
https://www.youtube.com/playlist?list=PLDcUM9US4XdMROZ57-OIRtIK0aOynbgZN


Sample space and events

Definition (Sample Space)

A sample space, Ω = {ω1, ω2, ...}, is the set of all possible outcomes, ω, of a random
generating process.

Definition (Event)

An event, A ⊂ Ω, is a subset of the sample space.

Example

Consider rolling a single six sided die.
The sample space is Ω = {1, 2, 3, 4, 5, 6}.
Events we might be interested in are A = {ω ∈ Ω : ω is even}, B = {1, 6}, or C = {3}.
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Event space and probability functions

Definition (Event Space)

A set S of subsets of Ω is an event space if it is

• non-empty: S ̸= ∅
• closed under complements: A ∈ S =⇒ Ac ∈ S

• closed under countable unions: if A1,A2, · · · ∈ S =⇒ A1 ∪ A2 ∪ · · · ∈ S

Definition (Probability Function)

A probability function assigns a number to every event in the event space: P : S → R.

Example

Consider rolling a single six sided die and the event B = {1, 6}:
P(B) = P(the roll is 1 or 6) = 1/3
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Kolmogorov axioms
How do we ensure that the numbers we assign to events align with our basic intuitions
about how probabilities should work?

Definition (Kolmogorov Axioms)

• Non-negativity: P(A) ≥ 0, ∀A ∈ S Events have non-negative probability.

• Normalization to 1: P(Ω) = 1 The probability that one of the outcomes occurs is 1.

• Additivity: if A,B ∈ S are disjoint (i.e., A ∩ B = ∅), then P(A ∪ B) = P(A) + P(B)
The probability of non-overlapping events is equal to the sum of their individual
probabilities.

Example

Consider rolling a single six sided die.
P(the roll is 1) = 1/6
P(the roll is 1,2,3,4,5, or 6) = 1
P(the roll is 1 or 6) = P(the roll is 1) + P(the roll is 6) = 1/6 + 1/6 = 1/3
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Basic properties

Basic properties of probability

For A,B ∈ S ,

• A ⊂ B =⇒ P(A) ≤ P(B)

• A ⊂ B =⇒ P(B\A) = P(B)− P(A)

• P(∅) = 0

• 0 ≤ P(A) ≤ 1

• P(Ac) = 1− P(A)

Example

Consider rolling a single six sided die.
P(the roll is 1) = P(the roll is 1 or 6)− P(the roll is 6) = 1/3− 1/6 = 1/6
P(the roll is not 1) = 1− P(the roll is 1) = 1− 1/6 = 5/6
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Joint and conditional probabilities

Definition (Joint probability)

For A,B ∈ S , the joint probability of A and B is P(A ∩ B). The joint probability is the
probability of the intersection of A and B, i.e., the probability that both A and B occur.

Addition rule

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Definition (Conditional probability and Bayes Rule)

For A,B ∈ S and P(B) > 0, P(A|B) = P(A∩B)
P(B) .

This implies the multiplication rule: P(A ∩ B) = P(A|B)P(B).
These imply Bayes rule: P(A|B) = P(B|A)P(A)

P(B) .
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Law of total probability

Law of total probability

If A1,A2, . . . form a partition of Ω and B ∈ S , then

• A1 ∪ A2 ∪ · · · = Ω, Ai ∩ Aj = ∅, and
∑

i P(Ai ) = 1

• P(B) =
∑

i P(B ∩ Ai )

• P(B) =
∑

i P(B|Ai )P(Ai )

The probability of B is a weighted average of conditional probabilities.

We can also use this to write Bayes rule as P(Aj |B) =
P(B|Aj )P(Aj )∑
i P(B|Ai )P(Ai )
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Independence of events

Definition (Independence of events)

For A,B ∈ S , A and B are independent if P(A ∩ B) = P(A)P(B).

We can then see that for independent events we have
P(A)P(B) = P(A ∩ B) = P(A|B)P(B) by the multiplication rule.

Which means that A and B are independent iff P(A) = P(A|B).

If knowing whether or not B occurred tells us nothing about whether or not A occurred,
the two events are independent.

(Events are mutually exclusive if the occurrence of one event excludes the occurrence of
the other. Mutually exclusive events cannot happen at the same time. So, typically,
mutually exclusive events are not independent events. For mutually exclusive events,
P(A|B) = 0 even if P(A) > 0. For independent events, these are equal.)
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Random variables
A random variable is function that maps the outcomes in the sample space to numeric
outcomes: X : Ω → R.
Example

Consider flipping a fair coin. The sample space is Ω = {heads, tails}. A random variable

representing the coin toss would be X =

{
0 if tails

1 if heads

Example

Consider rolling a six sided die. The sample space is really Ω = {face with one dot, face
with two dots, ...}. A random variable representing the die roll would be

X =


1 if face with one dot

2 if face with two dots

. . .
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Discrete random variables

Definition (Discrete random variable)

A random variable is discrete if its range is a countable set, that is, if it can only take on
a finite number of values.

Definition (Probability mass function (PMF))

For a discrete random variable X , the probability mass function is
f (x) = Pr(X = x), ∀x ∈ R. Further,

∑
x f (x) = 1.

Example

Consider a potentially biased coin flip. The sample space is Ω = {heads, tails} and X is 1
for heads but 0 for tails. Suppose the probability of heads is 0 ≤ p ≤ 1. Then the PMF is

f (x) = Pr(X = x) =


1− p if x = 0

p if x = 1

0 otherwise
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Cumulative distribution functions

Definition (Cumulative distribution function (CDF))

For a random variable X , the CDF is F (x) = Pr(X ≤ x), ∀x ∈ R.

Properties of CDFs

For a random variable X with CDF F ,

• F is non-decreasing: ∀x1, x2 ∈ R, if x1 < x2, then F (x1) ≤ F (x2).

• limx→−∞ F (x) = 0

• limx→∞ F (x) = 1

• ∀x ∈ R, 1− F (x) = Pr(X > x)
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Continuous random variables

Definition (Continuous random variable)

A random variable is continuous if there exists a non-negative function f : R → R such
that the CDF of X is F (x) = Pr(X ≤ x) =

∫∞
−∞ f (u)du,∀x ∈ R. Continuous random

variables can take on uncountably infinite numbers of different values.

Definition (Probability density function (PDF))

For a continuous random variable X with CDF F , the PDF is f (x) = d
duF (u)

∣∣
u=x

, ∀x ∈ R.

Example

Consider human heights. Height can take on infinitely many values between say zero and
10 feet. You are not either 5 feet tall or 6 feet tall; you can be lots of heights. But
different heights are more and less likely. Height is typically modeled with a normal
distribution centered some where between 5 and 6 feet.
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Continuous random variables

Properties of continuous random variable

For a continuous random variable X with PDF f ,

• ∀x ∈ R, f (x) ≥ 0

•
∫∞
−∞ f (x)dx = 1

• Pr(X = x) = 0

• Pr(X < x) = Pr(X ≤ x) = F (x) =
∫ x
−∞ f (u)du

• Pr(X > x) = Pr(X ≥ x) = 1− F (x) =
∫∞
x f (u)du

• Pr(a < X < B) = Pr(a ≤ X ≤ B) = F (b)− F (a) =
∫ b
a f (x)dx
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Joint distributions

Definition (Joint PMF and CDF for Discrete RVs )

For discrete random variables X ,Y , the joint PMF is
f (x , y) = Pr(X = x ,Y = y), ∀x , y ∈ R. The joint CDF is
F (x , y) = Pr(X ≤ x ,Y ≤ y), ∀x , y ∈ R

Definition (Joint PDF and CDF for Continuous RVs )

For continuous random variables X ,Y , joint CDF is
F (x , y) = Pr(X ≤ x ,Y ≤ y) =

∫ x
−∞

∫ y
−∞ f (u, v)dudv , ∀x , y ∈ R. The joint PDF is

f (x , y) = δ2F (u,v)
δuδv

∣∣
u=x ,v=y

,∀x , y ∈ R.

Example

Consider human heights and weight. These variables relate to one another and there are
different probabilities for the different combinations these variables can take. Again, these
might be modeled with a joint distribution - perhaps a bivariate normal distribution.
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Marginal and conditional distributions

Definition (Marginal PMF and PDF)

For discrete random variables X ,Y , the marginal PMF is
fY (y) = Pr(Y = y) =

∑
x f (x , y), ∀y ∈ R.

For continuous random variables X ,Y , the marginal PDF is
fY (y) =

∫∞
−∞ f (x , y)dx , ∀y ∈ R.

Definition (Conditional PMF and PDF)

For discrete random variables X ,Y , the conditional PMF of Y given X = x is
fY |X (y |x) = Pr(Y = y |X = x) = Pr(X=x ,Y=y)

Pr(X=x) = f (x ,y)
fX (x)

,∀y ∈ R and possible x .
For continuous random variables X ,Y , the conditional PDF of Y given X = x is
fY |X (y |x) =

f (x ,y)
fX (x)

,∀y ∈ R and possible x .

Multiplicative law

fY |X (y |x)fX (x) = f (x , y)
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Independence of random variables

Definition (Independence of random variables)

For random variables X ,Y with joint PDF or PMF f , X ,Y are independent if, ∀x , y ∈ R,
f (x , y) = fX (x)fY (y). Write X ⊥⊥ Y to denote that they are independent.

Implications of independence (part 1)

All of the following statements are equivalent:

• X ⊥⊥ Y

• f (x , y) = fX (x)fY (y), ∀x , y ∈ R
• fY |X (y |x) = fY (y)

• ∀D,E ⊂ R, the events {X ∈ D} and {Y ∈ E} are independent.

• For all functions g of X and h of Y , g(X ) ⊥⊥ h(Y ).

e.g., height and weight would be dependent - as you get taller you tend to weigh more;
height and whether you like ice cream are probably independent
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Expected values

Distributions are often summarized with measures of their center and spread.
Expected values are the most common measures of the center of probability distributions.
They provide information on where typical values for the variable are centered.

Definition (Expected values)

For a discrete RV X with PMF f the expected value is E[X ] =
∑

x xf (x).
For a continuous RV X with PDF f the expected value is E[X ] =

∫∞
−∞ xf (x)dx .

Example

Let X be a Bernoulli random variable (0 or 1, possibly representing a coin flip) with
probability of 1 (heads) 0 ≤ p ≤ 1. Then E[X ] =

∑1
x=0 xf (x) = 0× (1− p) + 1× p = p.

e.g., an expected value for height of, say, 5 foot 6 inches tells us something about typical
heights that is different than if the expected value for height were 7 feet
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Expected values

Properties of expected values

• Expectation of a function of a RV
• For a discrete RV X , E[g(X )] =

∑
x g(x)f (x).

• For a continuous RV X , E[g(X )] =
∫∞
−∞ g(x)f (x)dx .

• E[c] = c , ∀c ∈ R
• E[cX ] = cE[X ], ∀c ∈ R
• Linearity of expectations: ∀a, b, c ∈ R, E[a+ bX + cY ] = a+ bE[X ] + cE[Y ].
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Variance

Variance is the most common measure of a distribution’s spread or variability. It measures
how far apart values for the variable typically are: the expected value of the squared
difference between observed values and the mean.

Definition (Variance)

Variance of a RV X is V [X ] = E[(X − E[X ])2].

We can alternatively write
V [X ] = E[(X − E[X ])2]

= E[X 2 − 2XE[X ] + E[X ]2] expanding out

= E[X 2]− 2E[XE[X ]] + E[E[X ]2] by linearity of expectations

= E[X 2]− 2E[X ]E[X ] + E[X ]2 since E[X ] is a constant

= E[X 2]− E[X ]2

So V [X ] = E[X 2]− E[X ]2.
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Variance and standard deviations

Properties of variance

• V [c] = 0,∀c ∈ R
• V [c + X ] = V [X ],∀c ∈ R
• V [cX ] = c2V [X ], ∀c ∈ R

Definition (Standard deviation)

Standard deviation of a RV X is SD[X ] =
√
V [X ]. SD[X ] will have the same units as X ;

V [X ] does not since it deals with squared deviations.

Example

Let X be a Bernoulli random variable (0 or 1, possibly representing a coin flip) with
probability of 1 (heads) 0 ≤ p ≤ 1.
First, E[X 2] = p × 12 + (1− p)× 02 = p. We have from above that E[X ] = p.
So V [X ] = E[X 2]− E[X ]2 = p − p2 = p(1− p); SD[X ] =

√
p(1− p).
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Mean squared error
We often want to understand how well an RV approximates some value c . To do so we
want a metric that measures how far X is from c on average.

Definition (Mean squared error (MSE) )

Mean squared error for RV X and constant c is E[(X − c)2].

We can alternatively write
E[(X − c)2] = E[X 2 − 2cX + c2]

= E[X 2] +
(
E[X ]2 − E[X ]2

)
− 2cE[X ] + c2

=
(
E[X 2]− E[X ]2

)
+
(
E[X ]2 − 2cE[X ] + c2

)
= V [X ] + (E[X ]− c)2 MSE is composed of variance, expected value, and c .

Note that argminc∈R E[(X − c)2] = argminc∈R

(
V [X ] + (E[X ]− c)2

)
=

argminc∈R

(
(E[X ]− c)2

)
= E[X ].

So the expected value of X is the value for c that minimizes MSE.
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Covariance

We often want to measure the extent to which two RVs move together or to describe the
relationship between two variables (e.g., consider the relationship between height and
weight). We can generalize variance to this end.

Definition (Covariance)

The covariance between two RVs X ,Y is Cov[X ,Y ] = E[(X − E[X ])(Y − E[Y ])].

Again, we can rewrite covariance as Cov[X ,Y ] = E[XY ]− E[X ]E[Y ].
Large positive covariance means that high values of X appear when there are high values
for Y . (Height and weight have a positive covariance. Taller people tend to weigh more.)
Large negative covariance means that high values of X appear when there are low values
for Y . Note that covariance depends on the distributions of both X and Y and so
covariance will differ in magnitude for different pairs of RVs.

24 / 35



Properties of covariance

Properties of covariance

• V [X + Y ] = V [X ] + 2Cov[X ,Y ] + V [Y ]

• V [a+ bX + cY ] = b2V [X ] + 2bcCov[X ,Y ] + c2V [Y ]

• Cov[c ,X ] = Cov[X , c] = Cov[c , d ] = 0, ∀c, d ∈ R
• Cov[X ,Y ] = Cov[Y ,X ]

• Cov[X ,X ] = V [X ]

• Cov[a+ bX , c + dY ] = bdCov[X ,Y ],∀a, b, c , d ∈ R
• Cov[X +W ,Y + Z ] = Cov[X ,Y ] + Cov[X ,Z ] + Cov[W ,Y ] + Cov[W ,Z ]
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Correlation
Like standard deviation rescales variance, correlation rescales covariance. Correlation is
positive when covariance is positive and negative when covariance is negative. Where as
covariance can take any value, correlation is bounded by -1 and 1.

Definition (Correlation)

The correlation between two RVs X ,Y is ρ[X ,Y ] = Cov[X ,Y ]√
V [X ]

√
V [Y ]

.

Correlation and linear dependence

• ρ[X ,Y ] ∈ [−1, 1]

• ρ[X ,Y ] = 1 ⇐⇒ Y = a+ bX for some a, b ∈ R, b > 0

• ρ[X ,Y ] = −1 ⇐⇒ Y = a− bX for some a, b ∈ R, b > 0

Note that ρ[X ,Y ] = 0 does not mean X ⊥⊥ Y . E.g., X ∼ U(−1, 1), Y = X 2. This is a
non-linear relationship. [R demo]
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Properties of Correlation and Independence of RVs

Properties of Correlation

• ρ[X ,Y ] = ρ[Y ,X ]

• ρ[X ,X ] = 1

• ρ[a+ bX , c + dY ] = ρ[X ,Y ] if b, d > 0 or b, d < 0

• ρ[a+ bX , c + dY ] = −ρ[X ,Y ] if b < 0 < d or d < 0 < b

Implications of independence (part 2)

If X ,Y are independent RVs (X ⊥⊥ Y ), then

• E[XY ] = E[X ]E[Y ]

• Cov[X ,Y ] = 0

• ρ[X ,Y ] = 0

• V [X + Y ] = V [X ] + V [Y ]
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Conditional expectations

Conditional expectations are a key way to understand how one variable relates to another.
They let us describe how the center of one RV’s distribution changes when we condition
on some value of the other variable.

Definition (Conditional expectations)

For discrete RVs, E[Y |X = x ] =
∑

y yfY |X (y |x) for all possible values of x .

For continuous RVs, E[Y |X = x ] =
∫∞
−∞ yfY |X (y |x)dy for all possible values of x .

Linearity of conditional expectations

For RVs X ,Y and functions g , h, E[g(X ) + h(X )Y |X = x ] = g(x) + h(x)E[Y |X = x ].
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Conditional expectation functions

For every value of x , E[Y |X = x ] maps Y to the conditional mean of Y (a single value).
So we can consider this a type of function that takes in values of x and outputs the
conditional expectation of Y when X = x .

Definition (Conditional expectation functions (CEF))

For RVs X ,Y with joint PMF/PDF f , the conditional expectation function of Y given
X = x is GY (x) = E[Y |X = x ] for all possible values of x . We usually write E[Y |X ] to
denote the CEF.

Law of iterated expectations

E[Y ] = E[E[Y |X ]]
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Properties of conditional expectation functions

Properties of conditional expectation functions

For RVs, X ,Y and ϵ = Y − E[Y |X ],

• E[ϵ|X ] = 0 the deviations are centered on zero conditional on X

• E[ϵ] = 0 the deviations are centered on zero

• for function g , Cov[g(X ), ϵ] = 0 there is no linear relationship between X and the
deviations

E[ϵ|X ] = E[Y − E[Y |X ]|X ] = E[Y |X ]− E[Y |X ] = 0
E[ϵ] = E[E[ϵ|X ]] = E[0] = 0
I’ll leave the last property to you.
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Best predictors

Suppose X ,Y are RVs with some joint distribution and that we observe that X = x .
What is the best guess for the value of Y (where best means lowest MSE)?
That is, what function g of X minimizes E[(Y − g(X ))2]?

CEF is the best predictor

For RVs X ,Y , the CEF, E[Y |X ], is the best (minimum MSE) predictor of Y given X .
(Proof on page 75 of Aronow and Miller (2019))

So the CEF is the best way to approximate Y when we know X . Thus, the CEF is a good
target when we are trying to study how X relates to Y . But the CEF can be extremely
complicated, since there are no restrictions on the distributions of Y or X .
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Best linear predictors
We can say more if we limit our prediction functions to linear functions of X . That is,
restricting to g(X ) = a+ bX for some values of a, b ∈ R.
What is the best guess for the value of Y (i.e., g that minimizes E[(Y − g(X ))2]) using
linear g?

Best linear predictor (BLP)

For RVs X ,Y , the best (minimum MSE) linear predictor of Y given X is
g(X ) = α+ βX , where

α = E[Y ]− Cov[X ,Y ]

V [X ]
E[X ] and β =

Cov[X ,Y ]

V [X ]

(Proof on page 77 of Aronow and Miller (2019))

The BLP has an important relationship with OLS regression.
We will call β the regression coefficient.
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Properties of BLP

Properties of BLP

For RVs X ,Y and ϵ = Y − g(X ), where g(X ) = α+ βX is the BLP,

• E[ϵ] = 0

• E[X ϵ] = 0

• Cov[X , ϵ] = 0

While E[ϵ|X ] = 0 for the CEF this is not true for the BLP. We only have the weaker
statement E[ϵ] = 0.
Also, there is no covariance between X and the deviations.

BLP for independent RVs

For independent RVs X ,Y , the BLP of Y given X is E[Y ].
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Covariance, correlation, and the regression
coefficient

Covariance, correlation, and the regression coefficient from the BLP have the following
relationship. Note these are all capturing linear associations between X and Y .

β =
Cov[X ,Y ]

V [X ]
=

√
V [Y ]√
V [X ]

ρ[X ,Y ]

See Aronow and Miller (2019) for multivariate generalizations, proofs, and more detail.
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Possible topics for next Section

Review of matrix algebra
Review of statistics
Review of OLS
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