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Recommended resources

We’ll review potential outcomes and how we can use them to study causal effects.

Useful resources

1. Causal Inference: What If - Hernán and Robins (2020) [link]

2. Causal Inference: the Mixtape - Cunningham (2021) [link]

3. Mostly Harmless Econometrics - Angrist and Pischke (2009) [link]
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https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://mixtape.scunning.com/
https://www.mostlyharmlesseconometrics.com/


What are potential outcomes

What do we mean by the causal effect of treatment D on outcome Y for unit i?
How would Yi have looked if Di had been 1,
relative to how Yi have looked if Di had been 0.

We use potential outcomes to represent these possible versions of Yi .

• Yi when Di took the value 1 is written Y1i .

• Yi when Di took the value 0 is written Y0i .

• Yi = Y0i + (Y1i − Y0i )Di
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Individual treatment effects and fundamental
problem of causal inference

For unit i , the treatment effect could be written as τi = Y1i − Y0i .

This means we can write Yi = Y0i + (Y1i − Y0i )Di = Y0i + τiDi .

For unit i we only get to observe either Y1i or Y0i , since we cannot observe unit i when
they had been treated and when they were not treated at the same time. [And measuring
at different times means we’re really observing two separate outcomes (Yi ,t and Yi ,t′).]

The goal of causal inference is to find ways to “fill in” the missing potential outcomes
using what we observe.
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Built-in assumptions

Consistency: The statement that Yi = Y0i + (Y1i − Y0i )Di is really an assumption that
Ydi is the Yi that we would have seen if Di was d .

No-interference: Do unit j ’s attributes (e.g., outcome or treatment) affect unit i ’s
outcome? We could write YDi=d ,Yj=y ,i or Yi (Di = d ,Yj=y ) to represent a potential
outcome for having COVID or not, where D is getting vaccinated. Whether or not unit i
has COVID is affected by unit i ’s vaccination status as well as by whether or not unit j
has COVID. We often assume that this sort of thing is not happening:
Yi (Di = d ,Yj=y ) = Yi (Di = d).

One version of treatment: We also assume that what we mean by D = d is the same
thing in practice for all units. If we are interested in the effect of aspirin on headaches, we
don’t want D = d to mean “take some aspirin”. This could be 1 pill or 20 pills, which are
substantively different. We want D = d meaning “take 500mg of aspirin”.
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Measures of causal effects
There are many different ways to measure a causal effect. Due to the fundamental
problem of causal inference, we are often interested in some aggregation of individual
causal effects.
• ATE = E[τi ] = E[Y1i − Y0i ] = E[Y1i ]− E[Y0i ]
• ATT = E[Y1i − Y0i |Di = 1], ATC = E[Y1i − Y0i |Di = 0]
• CATE = E[Y1i − Y0i |Xi = x ]
• Causal mean ratio: E[Y1i ]/E[Y0i ]
• Binary outcomes:

• Causal risk difference: p(Y1i = 1)− p(Y0i = 1)
• Causal risk ratio: p(Y1i = 1)/p(Y0i = 1)
• Causal odds ratio: p(Y1i=1)/p(Y1i=0)

p(Y0i=1)/p(Y0i=0)

Different goals might require different measures. If you want to understand the total
number of cases of a disease under different treatments you might want a risk difference
but if you want to understand how much treatment increases disease risk, then you might
use the risk ratio. There are many other measures of causal effects.
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Identification and ignorability
How might we actually “fill in” the missing potential outcomes?
We do this by “identifying” some causal effect measure (say ATE = E[Y1i ]−E[Y0i ]) with
an expression of quantities that can be estimated from data.

E[Y1i ] =
∑
y

y × p(Y1i = y)

=
∑
y

y × p(Y1i = y |Di = 1) if Ydi ⊥⊥ Di , which we call “ignorability”

=
∑
y

y × p(Yi = y |Di = 1) by consistency: Yi = Y0i + (Y1i − Y0i )Di

= E[Yi |D = 1]

So we “filled in” the average treated potential outcomes by using the units that we
observed to have been treated and an assumption (Ydi ⊥⊥ Di).
We can also do something similar for E[Y0i ].
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Ignorability and experiments

But where did the Ydi ⊥⊥ Di come from? Perhaps which units treated or not is random.
That is, maybe we ran a randomized experiment or are studying a natural experiment.

How does random assignment of D give us Ydi ⊥⊥ Di? If a unit’s D value is assigned at
random, then no other features of that unit or its environment will be systematically
associated with Di . (Though, in a small sample, chance associations between D and
other variables are possible.)

Since D in a randomized experiment is no longer systematically associated with any other
features of the units or environment, we say that it is “ignorable,” and we can write
things like E[Y1i ] = E[Y1i |Di = 1] = E[Yi |D = 1].
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Ignorability and experiments

Example (Test Prep and SAT Scores)

Suppose we have a set of linear relationships that govern SAT score (Yi ), whether or not
someone went to a test prep course (Di ), and parental education (Zi ; say that parental
education increases prob. that you do test prep and your score). Say Zi is unobserved.

Zi = ηi where ηi , ξi , ϵi are independent noise,

Di = Φ(γ0 + γ1Zi + ξi ) and Φ() is the CDF of the normal dist.,

Yi = α0 + α1Zi + α2Di + ϵi and γ0, γ1, α0, α1, α2 ∈ R.
=⇒ Ydi = α0 + α1Zi + α2d + ϵi

We want to understand the effect that test prep (Di ) has on SAT score (Yi ), α2.
Di is not independent of Ydi because Zi appears in both the equation for Di and for Ydi .
If we were to randomize the assignment of D, this would mean that Di ∼ Bernoulli(p)
and so Zi would no longer be a cause of Di ; Di and Ydi would be independent.
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Difference in means
From a couple slide ago, we saw that, when we have ignorability (Ydi ⊥⊥ Di ), we could
identify the ATE as E[Y1i − Y0i ] = E[Yi |D = 1]− E[Yi |D = 0].
We can estimate this with 1

N1

∑N1
i=1:Di=1 Yi − 1

N0

∑N0
i=1:Di=0 Yi .

When we don’t have ignorability, we can write (see Cunningham (2021))

Difference in Means︷ ︸︸ ︷
E[Yi |D = 1]− E[Yi |D = 0]

= E[Y1i − Y0i ]︸ ︷︷ ︸
ATE

+E[Y0i |D = 1]− E[Y0i |D = 0]︸ ︷︷ ︸
“Selection” Bias

+(1− p(D = 1))(ATT− ATC)︸ ︷︷ ︸
Heterogeneous Treatment Effect Bias

where
ATT = E[Y1i − Y0i |Di = 1] and
ATC = E[Y1i − Y0i |Di = 0].
Do you see why ignorability makes DIM = ATE?
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https://mixtape.scunning.com/


Conditional ignorability
What might we do when randomization is not possible?
We might consider a “no unobserved confounders” argument.
That is, we might assume conditional ignorability holds: Ydi ⊥⊥ Di |Zi which means that,
within strata of Z , it is like treatment is randomly assigned.

Example (Test Prep and SAT Scores)

Recall our test prep example. We want to study the effect that test prep (Di ) has on SAT
score (Yi ), α2. Zi is parental education, which now say we observe.

Di = Φ(γ0 + γ1Zi + ξi )

Ydi = α0 + α1Zi + α2d + ϵi

Di is not independent of Ydi because Zi appears in both the equation for Di and for Ydi .
But if we look within strata of Zi (i.e., compare people whose parents have the same
education), we see that Di is independent of Ydi , since no other causes of Y are related
to D. (Note the last statement is an assumption of no unobserved confounders) 11 / 16



Identification and conditional ignorability

With conditional ignorability, we can also identify the distribution over the potential
outcomes as

p(Ydi ) =
∑
z

p(Ydi = y ,Zi = z)

=
∑
z

p(Ydi = y ,Zi = z)
p(Zi = z)

p(Zi = z)

=
∑
z

p(Ydi = y |Zi = z)p(Zi = z)

=
∑
z

p(Ydi = y |Di = d ,Zi = z)p(Zi = z) by Ydi ⊥⊥ Di |Zi

(∗) =
∑
z

p(Yi = y |Di = d ,Zi = z)p(Zi = z) by consistency

12 / 16



Identification and conditional ignorability

We can then identify causal effects, like the ATE.

E[Ydi ] =
∑
y

y × p(Ydi = y)

=
∑
y

y ×

[∑
z

p(Yi = y |Di = d ,Zi = z)p(Zi = z)

]
by (∗)

=
∑
z

[∑
y

y × p(Yi = y |Di = d ,Zi = z)

]
p(Zi = z)

=
∑
z

E[Yi |Di = d ,Zi = z ]p(Zi = z)
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Stratification or outcome modelling

So we saw that, with conditional ignorability, we could identify
E[Y1i ] =

∑
z E[Yi |Di = 1,Zi = z ]p(Zi = z).

We can estimate this as

1

N

N∑
i=1

Ê[Yi |D = 1,Zi ]

where Ê[Yi |D = 1,Zi ] is either the Z -strata-specific mean or a model we’ve fit for the
outcome Y using Z as predictors, where both use our observed data for treated units.

We are predicting the value for Y for each observation under the assumption that D = 1
and using the observed value for Z . We could do something similar for E[Y0i ].
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Inverse probability weighting (IPW)
We could also write E[Ydi ] as

E[Ydi ] =
∑
y

y × p(Yd = y) =
∑
y

∑
z

y × p(Y = y |D = d ,Z = z)p(Z = z) by (∗)

=
∑
y

∑
z

y × p(Y = y ,D = d |Z = z)

p(D = d |Z = z)
p(Z = z)

=
∑
y

∑
z

y × p(Y = y ,D = d ,Z = z)

p(D = d |Z = z)

=
∑
y

∑
z

∑
d

y × 1D=d × p(Y = y ,D = d ,Z = z)

p(D = d |Z = z)
= E

[
Y × 1D=d

p(D = d |Z = z)

]
We can then model the probability of treatment p̂(D = d |Z = z). This is often called a

“propensity score.” This can be estimated with 1
n

∑n
i=1

Yi×1Di=d

p̂(Di=d |Zi=z) .
These are simple estimators; they have short comings.
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Any remaining time

questions / break
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