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Recommended resources

We’ll go through the details of how to derive some key OLS results as well as discuss
common types of standard errors for OLS coefficient estimates.

Useful resources

1. Foundations of Agnostic Statistics - Aronow and Miller (2019) [link]

2. Elements of Statistical Learning - Hastie et al (2009) [link]

3. Econometrics - Hansen (2014)
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https://www.cambridge.org/core/books/foundations-of-agnostic-statistics/684756357E7E9B3DFF0A8157FB2DCECA
https://hastie.su.domains/ElemStatLearn/


Running Example

We’ll use Lalonde (1986) as an example dataset. The authors are trying to understand
whether a job training program increased earnings. We have high-level information on the
participants (e.g., age and education) as well as their earnings from 1975 and their
earnings from 1978.

We want to estimate how earnings compare for participants that were in the job training
program relative to those that were not.

We’ll use OLS regression to estimate the best linear predictor (BLP) as a simple but
interpertable approximation to the conditional expectation function (CEF) and a way to
understand how the average 1978 earnings compares between the treated group and the
control group. (We’re not going to really worry about causal inference, but this is a RCT.)
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https://www.jstor.org/stable/1806062##metadata_info_tab_contents


Set up

We have random variables Yi (i.e., 1978 earnings) and Xi = (Xi ,1,Xi ,2,Xi ,3,Xi ,4,Xi ,5)
(i.e., treatment indicator, age, education in years, married indicator, 1975 earnings, so
p = 5) for each of n = 445 participants (indexed by i). Suppose that Y ,X are drawn
from a joint density p(Y ,X) and our observations are IID.

We’ll arrange the X ’s into a n × (p + 1) matrix with n rows for the 445 participants and
p + 1 columns for the 5 explanatory variables as well as a column of 1’s for the intercept.

Xn×(p+1) =


1 X1,1 X1,2 · · · X1,p

1 X2,1 X2,2 · · · X2,p
...

...
...

. . .
...

1 Xn,1 Xn,2 · · · Xn,p

 and Y⊤ = (Y1,Y2, . . . ,Yn)

[R demo]
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Using a linear model

So in reality 1978 earnings (Y ) is not necessarily a linear function of treatment indicator,
age, education in years, married indicator, 1975 earnings (X), but we can get a simple
and useful summary of how the treatment (the job training program X1) relates to 1978
earnings using a linear model.

We can write Yi = Xiβ + ϵi , where ϵi is the error Yi − Xiβ and
β⊤ = (β0, β1, β2, . . . , βp) ∈ Rp+1 is a vector of coefficients.

We can use our data to estimate β. We’ll call our estimate β̂.
And our residuals are êi = Yi − Xi β̂. We’d like these to be small to approximate Y well.

OLS regression estimates β̂ by minimizing the sum of squared residuals across all obs.
That is, finding the β̂ that minimizes

∑n
i=1 ê

2
i .
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OLS

ê = Y − Xβ̂ is the vector of these residuals.
The OLS problem is to find the β̂ that minimizes

∑n
i=1 ê

2
i :

β̂ = argminb∈Rp+1

n∑
i

ê2i

= argminb∈Rp+1∥ê∥22
= argminb∈Rp+1∥Y − Xb∥22
= argminb∈Rp+1(Y − Xb)⊤(Y − Xb)
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OLS

We can minimize (Y − Xb)⊤(Y − Xb) by taking the derivative with respect to b and
setting it to zero:

δ

δb
(Y − Xb)⊤(Y − Xb) = −2X⊤(Y − Xb)

0 = −2X⊤(Y − Xb) = −2(X⊤Y − X⊤Xb)
=⇒ X⊤Xb = X⊤Y

=⇒ β̂ = b = (X⊤X)−1X⊤Y

[R demo]
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β and β̂

Recall that Y = Xβ + ϵ.
We can show that

β̂ = (X⊤X)−1X⊤Y

= (X⊤X)−1X⊤(Xβ + ϵ)

= (X⊤X)−1X⊤Xβ + (X⊤X)−1X⊤ϵ

= β + (X⊤X)−1X⊤ϵ

It turns out that
√
n(β̂ − β) converges in distribution to a multivariate normal distribution

with expectation 0.
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Expectation of OLS estimator

Without dealing with asymptotics, we can still investigate E[β̂|X] and E[β̂]:

E[β̂|X] = E[β + (X⊤X)−1X⊤ϵ|X]
= β + (X⊤X)−1X⊤E[ϵ|X]

So unless E[ϵ|X] = 0, E[β̂|X] ̸= β. Here we are taking the data matrix X to be random,
and so it only can be pulled out of the expectation when we condition on it.

Often people treat X as fixed (not random) in this case,
E[β̂] = β + (X⊤X)−1X⊤E[ϵ] = β, since E[ϵ] = 0 for the BLP.
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Variance of OLS estimator

Once we have our OLS estimate, we want to quantify our uncertainty about our estimate.
We do this by looking at the sampling variance (and it’s square root, the standard error)
of our estimator. We can then use these to estimate confidence intervals or p-values. E.g.,
we might be interested in whether we can statistically distinguish our estimates from zero.

So let’s investigate V [β̂|X], the sampling variance of our OLS estimate:

V [β̂|X] = V [β + (X⊤X)−1X⊤ϵ|X]
= V [(X⊤X)−1X⊤ϵ|X]
= (X⊤X)−1X⊤V [ϵ|X]X(X⊤X)−1 since X⊤X is symmetric

= (X⊤X)−1X⊤ΣX(X⊤X)−1

where V [ϵ|X] = Σ = ϵϵ⊤ is the conditional covariance matrix of the errors.
We want to find a way to estimate V [β̂|X].
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Assumptions about errors

Recall that Yi = Xiβ + ϵi .

Σ = ϵϵ⊤ =


σ2
1 σ1,2 · · · σ1,n

σ1,2 σ2
2 · · · σ2,n

...
...

. . .
...

σ1,n σ2,n · · · σ2
n

 is the conditional covariance matrix of the errors, ϵi .

So we are now considering how the errors for each observation covary or not.

It turns out that a simple plug in estimator using êê⊤ (i.e., using the regression residuals)
for Σ will not converge to V [β̂|X] as n → ∞.

There are a few common assumptions about these errors that we’ll discuss:
homoscedastic errors, heteroscedastic errors, clustered errors. These are assumptions
about the distribution and relationship between the errors across observations that allow
us to estimate V [β̂|X].
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Homoscedastic errors

An assumption of homoscedasticity means that we assume the ϵi ’s are independent (i.e.,
have zero covariance) and have a common variance σ2. That is, Σ = Inσ2:

Σ =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σ2


Under this assumption, we see that

V [β̂|X] = (X⊤X)−1X⊤ΣX(X⊤X)−1 = (X⊤X)−1X⊤Inσ2X(X⊤X)−1 = σ2(X⊤X)−1

We can estimate σ2 with σ̂2 = 1
n−p

∑
ê2i .

So we estimate the standard errors of β̂ as
√
V̂ [β̂|X] =

√
σ̂2(X⊤X)−1.

[R demo]
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Heteroscedastic errors
An assumption of heteroscedasticity means that we assume the ϵi ’s are independent (i.e.,
have zero covariance) but each has its own variance σ2

i . That is,

Σ =


σ2
1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

n


Under this assumption, we see that

V [β̂|X] = (X⊤X)−1X⊤ΣX(X⊤X)−1 = (X⊤X)−1

(
n∑

i=1

XiXi
⊤σ2

i

)
(X⊤X)−1

It can be shown that Σ = E[ϵϵ⊤|X] = E[D0|X], where D0 is a diagonal matrix with ϵ2i ’s
on the diagonal. We can estimate the ϵ2i ’s with ê2i ’s. So we estimate the standard errors

of β̂ as
√
V̂ [β̂|X] =

√
(X⊤X)−1

(∑n
i=1XiXi

⊤ê2i
)
(X⊤X)−1.

This is the simplest form of ”robust” SE. 13 / 18



Robust standard errors

There are a few flavors of robust standard error.

1. HC0: V̂ [β̂|X] = (X⊤X)−1
(∑n

i=1XiXi
⊤ê2i

)
(X⊤X)−1

2. HC1: We could scale the variance estimate by n
n−p to get an unbiased estimate.

3. HC2: We could use standardized residuals rather than the residuals êi .

4. HC3: We could use the prediction errors from leave one out cross validation rather
than the residuals êi .

[R demo]
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Clustered errors
An assumption of clustered errors means that we assume the ϵi ’s are not all independent.
That is, within in clusters of observations, the errors are correlated, but across clusters
the errors are not clustered. In this case, the covariance matrix is block diagonal. For
example, with four units and two clusters

Σ =


σ2
1 σ12 0 0

σ12 σ2
2 0 0

0 0 σ2
3 σ34

0 0 σ34 σ2
4


Think of a study looking at a new type of teaching method for elementary schools.
Students are exposed or unexposed to the new teaching method based on which
classroom they are in. But the outcomes for the students in the same class are also
probably correlated.

We can use plug in estimates of the cluster covariance matrices to get a consistent
estimator for V [β̂|X], as the number of clusters becomes large (e.g., more than like 40).
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The Bootstrap

Idea
The bootstrap is another way to do inference for estimators. It is based on using the
empirical distribution (of Y ,X) as an approximation to the true distribution.

If we knew the true distribution, then we could simulate draws from that distribution to
calculate the sampling distribution of any estimator to arbitrary precision by literally
taking repeated simulated samples of size n and each time calculating our estimate and
then looking at the distribution of these estimates.

Of course, we don’t know the true distribution. The bootstrap says pretend that the
distribution that we are sampling looks exactly like the sample we have. Plug in
the empirical distribution for the true distribution and sample from that.
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The Bootstrap
Procedure
To get standard errors for our estimator,

1. Take a sample, with replacement, of size n from our data sample.

2. Calculate the estimate for that bootstrap sample.

3. Repeat 1. and 2. many many times.

4. Calculate the standard deviation of the resulting collection of bootstrap estimates.

The result of 4. is our estimate for the standard error of our estimator. This will
consistently estimate the standard error.

The bootstrap assumes IID observations and plug in regularity conditions. But notice that
this is a very general procedure that can be applied not just for regression but for any
estimator. We can also look at quantiles of the distribution of bootstrap estimates to
estimate confidence intervals. ”When in doubt, use the bootstrap.” (paraphrasing
Aronow and Miller (2019)) [R demo]
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Any remaining time

Group work on PSET / questions
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