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Abstract

In this paper, we discuss interesting cases in which sample selection presents opportunities to use instrumental variables
and in which using instrumental variables can be used to overcome sample selection. However, we discuss how these
opportunities may arise only in very specific settings, as is the case for credible instrumental variables in general. We also
discuss the numerous threats that sample selection can pose to the credibility of instrumental variable approaches. To
facilitate this discussion, we revise existing graphical criteria for instrumental variables to highlight the special role that
sample selection plays in the instrumental variables setting. We do this by first introducing an extension to typical causal
graphs that visualizes how sample selection alters the relationships between variables in the sample. We then provide rules
(graphical criteria) that allow researchers to use these extended graphs to evaluate the key assumptions of instrumental
variables in their own applications, while responsibly accounting for sample selection. In this way, we generalize recent
discussions of sample selection and instrumental variables and connect these to existing graphical criteria. Moreover, we
emphasize the importance of including a sample selection node in all causal graphs, warn of the dangers of applying simple
heuristics about sample selection, and suggest that practitioners appeal to formal approaches like those we present to
understand how sample selection may threaten the validity of instrumental variables in their specific applications.

1 Introduction
When researchers are interested in the causal effect of a treatment (D) on an outcome (Y ), for example whether increased
trust in government increases support for redistributive policies, they often appeal to a sample of data drawn in some selective
way from a larger population. Whether or not an estimated effect obtained from a sample drawn in some non-random way is
an unbiased estimate of the causal effect even averaged over the members of the selected group is traditionally referred to
as “internal validity” (Campbell, 1957; Campbell and Stanley, 1966; Cook and Campbell, 1979; Shadish et al., 2002). This
property is distinct from questions that compare the group in hand to other possible populations (“external validity”). In
many studies, a potential threat to internal validity and external validity is the presence of unobserved common causes of
both the treatment and the outcome, called confounders. Perhaps trust in government and support for redistributive policies
are influenced not only by political party membership and similar measurable factors but also by difficult to measure factors
like interest in government, anti-social tendencies, and others. If all such confounding variables have been measured and their
effects can be adjusted for, then researchers might be able to attain internal validity using a “no unobserved confounders” type
approach. We leave discussions of external validity to other authors.1 When the ability for researchers to directly adjust
for all plausible confounders of this type is limited, then researchers might appeal to an alternative strategies for achieving
internal validity. One such strategy is instrumental variables.

The instrumental variables (“IV”) identification strategy attempts to leverage the variation in a variable that is associated
with the treatment but not directly with the outcome (this variable is called the instrument) to try to understand the causal
relationship between the treatment and the outcome. (Imbens and Angrist, 1994; Angrist et al., 1996; Hernán and Robins,
2006; Pearl, 2001, 2009; Baiocchi et al., 2014; Hernán and Robins, 2020) In it’s simplest form, this boils down to looking at
how the outcome and the instrument are associated and how the treatment and the instrument are associated and then trying
to use these components to get at how the treatment and outcome are causally related. To go from associations between
the instrument and outcome and the instrument and treatment to a causal relationship between the treatment and outcome
requires restrictions on the causal relationships between the three variables. The specific restrictions are discussed in detail
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1We agree with Imbens (2014a,b) in putting internal validity before external validity: “Nonetheless, in general the subpopulation of compliers

is not chosen for its interest, but because we can hope to learn something about them. It is about the primacy of internal validity over external
validity (Shadish, Cook and Campbell, 2002).”

1



[DRAFT]

in subsequent sections but at a minimum these include “ignorability,” “relevance,” and an a third assumption that can take
various forms depending on what the researchers believe is plausible (examples are effect homogeniety, monotonicity, and
one-sided non-compliance). These restrictions are often demanding and do not hold in many cases. But even when these
restrictions do appear to be met, we must also consider how studying a non-random sample of units could threaten the
internal validity of an instrumental variables approach.23

Sample selection can arise at various points in a study: during study entry (e.g., from non-participation or participation
that is not representative of the population) or the data gathering process (e.g., only gathering data on some segment of the
population), between study entry and analysis (e.g., loss to follow-up), or even during analysis as a result of conditioning or
subsetting. The manner in which the sample was selected can have dramatically different implications for the validity of an
instrumental variables design than it does for a simple covariate adjustment approach. Further, we cannot credibly rule out
threats to internal validity from sample select for instrumental variables (as is true of other designs) without clearly laying out
how sample selection fits within the causal model. Echoing Berk, 1983 and Greenland, 2022, we stress that, for any specific
application, the details of the causal structure and sample selection mechanism determine whether sample selection threatens
internal validity and what might be done about it.

We are by no means the first authors to point out that sample selection can violate the assumptions of instrumental
variables approaches. Canan et al. (2017); Swanson et al. (2015); Swanson (2019); Hughes et al. (2019); Ertefaie et al.
(2016); Gkatzionis and Burgess (2018); Hernán and Robins (2020); Elwert and Segarra (2022) all discuss sample selection
and instrumental variables. Canan et al. (2017) discusses how one form of sample selection can violate IV assumptions.
Hughes et al. (2019) tries to provide a more comprehensive view into how sample selection can violate IV assumptions. They
provide several examples, run simulation studies, and provide some guidance and description on the reason violations arise
in their examples. They do not provide guidance for an arbitrary causal graph and sample selection mechanism. In their
analysis, they do not graphically represent how sample selection alters the relationships between variables and they provide
only heuristics not a complete set of rules for dealing with sample selection in the context of instrumental variables. We
discuss their examples in detail in a subsequent section. Swanson (2019) discusses broad questions about how sample selection
can bias IV studies and provide guidance for applied researchers. However, they do not provide anything systematic for an
arbitrary causal model and sample selection mechanism. They do discuss threats posed by sample selection problems that
are unique to IV (e.g., selection on the treatment can be a problem for IV whereas it is not typically for a simple covariate
adjustment approach). They also mention that not all types of sample selection that might threaten internal validity in the
context of other designs threaten internal validity for instrumental variables. Hernán and Robins (2020) in their discussion of
instrumental variables mention that sample selection can violate instrumental variables assumptions and also briefly mention
some interesting cases that we analyze further in this paper. There are various papers that focus on applications that explore
specific examples. Of particular interest is where researchers are interested in comparing two treatment levels and select only
units that receive either of these treatment levels, but more than two treatment levels exist. (Swanson et al., 2015) Sheehan
et al. (2008) provides good examples of proxy and confounded instruments, as does Hernán and Robins (2020). Swanson and
Hernán (2013) suggest a checklist for reporting IV conditions and results. This does not include careful consideration of the
sample selection mechanism.

Van Der Zander et al. (2015); Van Der Zander and Liśkiewicz (2016); Kumor et al. (2020) present graphical approaches to
finding instruments and their generalizations, but do not focus on how sample selection relates to these. Galles and Pearl
(1998); Pearl (2001, 2009); Elwert and Segarra (2022) discuss conditional instruments and graphical criteria for them of the
sort we will discuss. While Pearl (2001); Elwert and Segarra (2022) focus primarily on linear models, Galles and Pearl (1998);
Pearl (2009) discuss potential outcomes as we do. While our approach could be thought of as asking whether a variable
is a conditional instrument (defined by these graphical criteria) where we include S in the conditioning set (the approach
used in Elwert and Segarra (2022)), we believe it is instructive and clarifying to treat sample selection as a special variable
(since it is the only variable we don’t observe but must condition on) and to graphically show how sample selection alters the
relationships between variables. Further, it is reasonable for a user to wonder whether sample selection can safely be treated
like other variables or not and what this means with respect to internal validity. We also provide graphical criteria that allow
us to obtain independence between potential outcomes and the instrument and to obtain relevance of the instrument to the
treatment,4 but we structure these criteria to highlight the role that sample selection is playing, rather than assuming it is
clear to the user how sample selection fits into the criteria. Further, Elwert and Segarra (2022) focus on sample selection
resulting from conditioning on a descendant of the treatment; we extend our analysis beyond such cases and provide clear
graphical guidance on when instrumental variables can be used for any sample selection mechanism. Elwert and Segarra (2022)

2The threats that sample selection poses for internal validity in simple covariate adjustment identification strategies are discussed in Rohde and
Hazlett (20XX).

3It turns out that relevance and ignorability alone are enough to obtain bounds on causal effects. See Pearl (2009) chapter 8 and Balke and Pearl
(1994a). We do not discuss this further here, but when such bounds are sufficient no “third” assumption is required.

4The graphical criterion that Pearl (2009) refers to originates in Galles and Pearl (1998). This graphical criterion is stated as "every path
connecting [IV ] to Y must pass through [D], unless it contains arrows pointing head-to-head" (Galles and Pearl, 1998) or "every unblocked path
connecting [IV ] and Y must contain an arrow pointing into [D]" ((Y ⊥⊥ IV |X)G

X
) (Pearl, 2009).
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provide exact expressions for sample selection bias in linear models under a few important sample selection mechanisms.
In light of the above discussion, our main contribution is two fold. We restate the graphical criterion from Galles and Pearl

(1998); Pearl (2001, 2009) so as to highlight the special role that the sample selection variable plays. As a result of this, we
provide a comprehensive guide to how sample selection can threaten the internal validity of instrumental variables approaches.
This generalizes the discussions of sample selection as a threat to internal validity found in Canan et al. (2017); Hughes et al.
(2019); Swanson (2019); Elwert and Segarra (2022). In this way, we bridge the gap between the graphical criteria for IV that do
not discuss sample selection with recent discussions of sample selection and IV. Additionally, we ease analysis by introducing
extended causal graphs of the type discussed in Daniel et al. (2012) and Rohde and Hazlett (20XX) that show how sample
selection alters the relationships between variables in the sample, we advocate and illustrate the importance of including a
sample selection node in all causal graphs and of using formal graphical criteria rather than simple heuristics, and we explore
many interesting implications of sample selection for instrumental variables evaluating both threats and opportunities. Our
graphical approach emphasizes the potential for many purely statistical relationships to be created by sample selection in an
instrumental variables context that are typically not obvious in regular causal graphs. We do not focus on the additional
assumptions that lead to identification results for instrumental variables, as these are typically not represented in causal
graphs and of which there are many. In Appendix XX, we also illustrate some examples of how identification can proceed in
the selected sample, given some additional assumption like monotonicity or one-sided non-compliance. On these points, we
believe we provide clarity that does not already exist in the literature.

2 Background, notation, and key quantities
We are interested in the causal effect of a treatment, D, on an outcome, Y , for units in the selected sample. For this purpose, we
should have some population in mind from which the sample was selected. This will allow us to attempt to non-parametrically
model the sample selection process.5 We will use a binary variable, S, to denote sample selection.6

Our approach is grounded in structural causal models (SCM; Pearl (2009)), potential outcomes (Splawa-Neyman et al.
(1990), Rubin, 1974, 1978, 1990), and directed acyclic graphs (DAGs; Pearl (2009)). Potential outcomes are solutions to the
equations in SCMs, under intervention. The equations and variables in SCMs correspond to the edges and nodes in DAGs.7
Let’s introduce some notation to clarify the types of casual effects we mean when we say internally valid causal effects and
causal quantities. A potential outcome, Yd[i], is the value that the variable Y would have taken for unit i, if the variable D
for unit i had been set, possibly counterfactually, to the value d. The unit-level causal effect of setting D to d relative to D to
d′ is τi = Yd[i]− Yd′ [i].

The fundamental problem of causal inference, however, is that we are never able to observe more than one of the potential
outcomes for a given unit and so cannot calculate unit level causal effects. (Rubin, 1978; Holland, 1986; Imbens and Rubin,
2015; Westreich et al., 2015) Despite this, these are the building blocks of typical causal inferential targets. When readers see
"internally valid causal effects," we suspect that most have in mind something like the sample average treatment effect (SATE),
1
N

∑N
i=1 τi, which is the simple average of the unit level effects across the units that are observed in the sample. Researchers

might also be interested in the the causal effect for the sub-population for which the selected sample is a representative sample.
An estimation strategy is said to be “internally valid” if it can unbiasedly or consistently estimate such quantities. In the
insturmental variables context, we will typically be targeting a “local” average treatment effect, where the effect is local to the
“compliers”8 in the selected sample or the compliers in the sub-population. Depending on the assumptions that researchers
are willing to make, these local average treatment effects might equal more familiar causal effects like the average treatment
effect or average treatment effect on the treated in the selected sample or in the sub-population. In what follows, we do not
always differentiate units eligible to be in the selected sample from those specifically in the sample in hand. Obtaining a valid
estimate of a causal effect for the specific sample, we can then generalize this to the subpopulation. So going forward, we
often refer to just the units in the sample at hand, even if our target is really the subpopulation.

2.1 Instruments under sample selection
Instrumental variables approaches can be used to identify causal effects of the treatment on the outcome in the presence of
relationships between the treatment and outcome other than the causal relationship. This is a powerful capacity, when used

5While having a population in mind is useful, “There is also the problem of infinite regress. Even if one has a random sample from a defined
population, that population is almost certainly a nonrandom subset from a more general population. ... In principle, therefore, there exists an
almost infinite regress for any dataset in which at some point sample selection bias becomes a potential problem.” Berk (1983)

6See Rohde and Hazlett (20XX) for a discussion of why we choose to represent sample selection as a separate binary variable.
7See Pearl (2009) and Appendix C for formal details.
8Compliers are the units that choose to take the treatment only when encouraged to do so by the instrument. See (Imbens and Angrist, 1994;

Angrist et al., 1996; Hernán and Robins, 2020) for further discussion. In what follows, we allow for instruments that are not direct causes of the
treatment. In this case, so long as ignorability is not violated, there will be an unobserved direct cause of the treatment. This unobserved variable is
what defines compliers. See Appendix XXXX for an example.
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properly, since ruling out unobserved confounding and other forms of non-causal relationships between the treatment and
outcome can be difficult. As we’ll see, it turns out that this approach trades one set of challenges for another and is not a
silver bullet. The key to an instrumental variables approach is the presence of a variable (that we call an instrument, IV )
that is associated with the treatment, D, but that is not otherwise associated with the outcome, Y . We want the instrument
to covary with the treatment but only covary with the outcome as a result of the causal association between the treatment
and the outcome. Simple instruments are depicted in Figure 1. When such a variable exists (and we possibly make some
additional assumptions), we are able to use the association between the instrument and the outcome as well as the association
between the instrument and the treatment to identify (or bound) a causal effect of the treatment on the outcome. For such a
set up to work we need to be very careful about exactly how the instrument relates to the treatment and to the outcome. We
can capture the precise requirements using the conditions of relevance and ignorability.

Figure 1: Simple causal graphs for instruments

IV D Y

U

IV D Y

U

IV D Y

UX

We alter the definition of an instrument found in Pearl (2009) to explicitly state that we must restrict ourselves to the
selected sample, that is, we must condition on S = 1. The following definition is adapted from Pearl (2009), Definition 7.4.1.9

Definition 1 (Instruments, Relevance, and Ignorability). A variable IV is an instrument relative to the total effect of D on
Y within the stratum S = 1 if there exists an X, unaffected by D, such that the following hold.

1. (relevance) D ̸⊥⊥ IV |X,S = 1
2. (ignorability) Yd ⊥⊥ IV |X,S = 1

Relevance captures the idea that in order to study the relationship between the treatment and outcome, the instrument
must be associated with the treatment. Otherwise, we cannot use the instrument to isolate any of the variation between the
treatment and the outcome. Ignorability captures the idea that, while we want the instrument to associate with the treatment,
we do not want it to directly cause the outcome or to be related with the outcome other than through its relationship with the
treatment. If it were associated with the outcome in one or both of these ways, then we could not disentangle the association
between the instrument and the outcome from these relationships and the association that runs from the instrument to the
treatment to the outcome. The latter contains the relationship we want to study, namely that between the treatment and the
outcome. Our alteration to Pearl’s definition make explicit that we want these conditions to hold in the selected sample.

Two points of clarification are useful. First, if conditioning on observed covariates alone can allow for the identification of
causal effects of interest, then we may not need an instrumental variables approach at all. For example, see Pearl’s back-door
criterion (Pearl, 2009) for how this might be done. In this paper, we use covariate adjustment and conditional instruments
in order to use an instrumental variables approach. An instrumental variables approach only makes sense when we cannot
eliminate all bias between treatment and outcome with covariate adjustment alone, whether this bias is from confounding or
sample selection. Obviously, all elements of X must be observed variables for a conditional instrument to be useful. Second,
we emphasize once more that, these conditions are not sufficient for identifying a causal effect of interest. They define an
instrument and are enough to bound a causal effect, but not point identify them. Assumptions like effect homogeniety,
monotonicity, or one-sided non-compliance are also required for point identificaiton. However, these will not be a focus of
our discussion, as these are not explicit in causal graphs and our project here is to construct a graphical framework for
evaluating relevance, ignorabillity, and the presence of instruments. These additional assumptions are, of course, still vital to
the identification of causal effects and researchers need to take care that they are appropriately considering the plausibility of
these assumptions. In a the Appendix, we show how such assumptions can be combined with relevance and ignorability to
identify causal effects.

We are often not necessarily interested in the causal effect of IV on Y . Rather, we’re interested in all the ways that
IV associates with Y through D. If IV and D are associated due to confouding or sample selection, this is ok, as long as

9This definition is by no means the only way to define an instrument. Pearl (2009) also provides conditions that are purely graphical and do
not involve potential outcomes. Angrist et al. (1996); Lousdal (2018) require that the IV - D relationship is causal and unconfounded, which
Pearl (2009) points out is unnecessary in general. Hernán and Robins (2006, 2020) split ignorability into two conditions, one of which is the well
known "exclusion" restriction: Yd,iv = Yd,iv′ = Yd and Yiv,d ⊥⊥ IV . As shown in the main text, we can combine exclusion and ignorability into
Yd ⊥⊥ IV ; see Hernán and Robins (2020). (Proof: Yd,iv′ = Yd and Yiv,d ⊥⊥ IV =⇒ Yd ⊥⊥ IV : (Yiv,d = Yd) ⊥⊥ IV . Yd ⊥⊥ IV =⇒ Yd,iv′ = Yd and
Yiv,d ⊥⊥ IV : Suppose Yiv,d ̸= Yd. Then there is a path from IV to Y that does not run through D. This means that IV is a common cause of Y and
D and so Yd ̸⊥⊥ IV , a contradiction. So Yiv,d = Yd, which in turn means (Yiv,d = Yd) ⊥⊥ IV .) Greenland (2000); Didelez and Sheehan (2007a,b);
Sheehan et al. (2008) use somewhat different conditions that invoke an unobserved confounder explicitly. Swanson et al. (2018) discuss bounds that
can be found for the ATE under various alternative IV conditions. We adopt what they describe as the "least restrictive" set of IV conditions here.
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all the association between IV and Y is thorugh D. So IV and D need only be associated conditional on X,S = 1, we do
not require IV → D. We might consider a few sub-types of instruments. "Causal" instruments are those for which there is
an unconfounded causal path IV → D. "Proxy" instruments are those for which the association between IV and D flows
through a path like IV ← U∗ → D, where U∗ is a causal instrument and IV is a proxy for U∗. Van Der Zander et al. (2015)
define an "ancestral" instrument as one for which conditioning on a variable creates the relevance needed for an instrument.
This might look like IV → X ← U∗ → D, where, again, U∗ is a causal instrument and IV is a proxy for U∗, conditional on
X. Another interesting case might be IV → S ← U∗ → D, where S is the selection node; we discuss this further below. One
might also consider a "confounded causal" instrument where we have both IV → D and IV ← U∗ → D, as well as other
combinations of these. These sub-types listed are suggestive of the flavors of instruments that might arise, but are not a
comprehensive list nor meant to suggest that these types of instruments arise frequently.

Readers may be asking themselves the following questions. How do we know whether relevance and ignorability hold?
How are we to determine whether or not relevance and ignorability hold within the selected sample when there is no sample
selection node in graphs like those in Figure 1? Answering these questions is difficult, and, in practice, we can never be
certain that some set of covariates will provide the relevance and ignorability we need. The onus is on researchers to make
plausible arguments for relevance and ignorability. To aid in this, we can build a model of how the treatment and outcome
causally relate to each other and relevant covariates. Such a model should capture all the structural information that is
available about the causal mechanisms relating important variables, as well as the uncertainty about such relationships. The
causal relationships can be non-parametrically encoded in a structural causal model which can be represented graphically as a
directed acyclic graph (and extensions thereof). See Pearl (2009) and Appendix C for details and Figure 1 for examples.

DAGs allow us to visualize dependencies and independencies between variables in terms of a path separation criterion,
d-separation. (Pearl, 2009) Two sets of nodes, D,Y , in a graph G are said to be d-separated by a third set, Z, if every path
from any node D0 ∈ D to any node in Y0 ∈ Y is blocked. A path is blocked by Z if either [1] some W is a collider10 on the
path between D,Y and W ̸∈ Z and the descendants of W are not in Z or [2] W is not a collider on the path but W ∈ Z. See
Pearl (2009), chapter 1 for details. Graphical criteria can then be used to determine when relevance and ignorability hold. In
the next sections, we will present an extension to the typical causal graphs and an associated graphical criteria built to help
researchers determine when relevance and ignorability statements hold in the presence of sample selection.

3 Proposal
In this section, we propose extended causal graphs that explicitly show how sample selection alters the relationships between
variables in the sample. We also provide rules (graphical criteria) for using these graphs to determine when relevance and
ignorability hold. In doing so, we revise the existing graphical approaches for instruments to highlight the special role of
sample selection. At the same time, we formalize and generalize recent discussions of sample selection in the instrumental
variables context. In the following section, we review the implications of sample selection for instrumental variables.

3.1 Internal selection graphs
We now detail our simple graphical approach to determining whether relevance and ignorability hold. The key is to graphically
represent the ways in which sample selection alters the relationships in the selected sample. We do this by defining internal
selection graphs, which visually extend traditional causal graphs to represent all the ways that sample selection can change
relationships between variables.

Definition 2 (Internal Selection Graph, G+
S ). Let G be the DAG induced by a SCM.

1. Create GS by adding an appropriately connected binary selection node, S.
2. Draw a circle around S to clearly indicate that we must limit our analysis to S = 1.
3. Add to GS any node which is a parent of the treatment or a parent of a descendant of the treatment. Add to GS any

node which is a parent of the potential instrument or a parent of a descendant of the potential instrument. (US , the
background factors contributing to selection, can be excluded.)

4. Add a dashed undirected edge between all variables between which S is a collider or an ancestor of S is a collider. We
will call these dashed, undirected edges bridges.

Call the resulting graph an internal selection graph, G+
S . (These graphs are similar to those discussed in Daniel et al. (2012)

and Rohde and Hazlett (20XX).)

10A collider is a node in the graph into which two arrows point: A→ S ← B. See Pearl (2009) for an introduction to causal graphical models and
colliders. Conditioning on a collider or a descendant of a collider can induce an association between the parents of the collider. Shahar and Shahar
(2017) discuss the conditions under which such an association is created. Since our approach is non-parametric and graphical, we assume such an
association is created when sample selection is a collider or a descendant of a collider.
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Figure 2: Examples of Internal Selection Graphs
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The key features of internal selection graphs111213 are the inclusion of an encircled sample selection node, specific
background variables, and bridges that capture the statistical associations that result from sample selection. These additions
ensure sample selection and the changes it requires for identification are visualized in the graph and can be analyzed easily.
See Figure 2 for examples. We will differentiate between a few types of paths. Following the above discussion, d-separation is
defined in the same way for these paths as for regular paths, since colliders are defined in the same way. See Appendix C for
details. Generalized paths are any sequence of nodes and edges (directed edges and/or bridges) where each node appears
only once (e.g., D Z → Y , D → Y , D → S ← Z, UD → D → Y ). Causal paths are any generalized path where all edges
between the nodes are directed and point in the same direction (e.g., D → Y , UD → D → Y ). Generalized non-causal paths
are any generalized path that isn’t a causal path (e.g., D Z → Y ). Figure 2(e) provides a clear example of a setting in which
internal selection graphs greatly facilitate understanding how sample selection can alter relationships between the variables in
the selected sample. The statistical associations created due to sample selection between many variables, as well as some of
the variables themselves, would be missing from the corresponding DAG.

3.2 Graphical criteria
So how can we use internal selection graphs to determine whether relevance and ignorability hold? We’ll use a set of rules
captured in the following graphical criteria.

3.2.1 Relevance

Relevance is the first condition in our definition of instruments and is perhaps the simpler of the two conditions. It captures
the idea that, in order to study the relationship between the treatment and outcome using an instrument, the instrument must
be associated with the treatment in some way. Otherwise, we cannot use the instrument to understand any of the variation
between the treatment and the outcome. The relevance criterion is similar to condition (ii) in the graphical criterion provided
in Pearl (2009) and similar to the condition (G1) in the graphical criterion provided in Elwert and Segarra (2022), but altered
to indicate the special role that sample selection plays and to work with internal selection graphs.

Definition 3 (Relevance Criterion). A set of nodes X and a possible instrument IV in G+
S satisfy the relevance criterion

relative to D (treatment), and Y (outcome) if there is at least one (causal or generalized non-causal) path between IV and D
that does not pass through S and is not blocked by X.

11Including US would lead to the direct parents of S to be associated with each other through US . But the direct parents of S will already be
associated with each other due to conditioning on selection itself. The associations between US and any direct parents of S are otherwise immaterial
to relevance and ignorability, making the inclusion of US unnecessary.

12Bridges are simply graphical representations of the purely statistical relationships that arise as a result of conditioning on a collider. Here, we
are forced to filter to S = 1; so when S is a collider, we are conditioning on a collider.

13The value of this sort of graph for evaluating sample selection can be seen in ??, papers that informally explore various types of selection bias in
sociology and economic history. These papers, without stating a formal approach for doing so, add bridge-like undirected edges to the graphs they
use to illustrate issues related to sample selection, but do not formally discuss how these non-causal edges can be incorporated into attempts to
identify causal quantities, as we do in this paper. ? also discusses an approach in which undirected edges are added to the graph.
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Theorem 1. If a set of nodes X and a possible instrument IV in internal selection graph G+
S satisfy the relevance criterion

relative to D (treatment), and Y (outcome), then D ̸⊥⊥ IV |X,S = 1.

This result is proved in Appendix C. We need the instrument to be associated with the treatment. Whether this association
manifests as a causal relationship (e.g., IV → D) or a non-causal relationship (e.g., IV ← U → D) is not important. For
relevance to hold, we just need that the values the instrument takes are related some how to the values that the treatment
takes.14 So we just want there to be some path between these two variables. Moreover, we need this association to persist (or
perhaps to arise) when we condition on both X and S = 1. Hence, our criterion requires that there is at least one path that
does not pass through S. The paths through S become irrelevant in internal selection graphs because if S is not a collider on
a path, then the path is blocked and we can ignore it; further, if S is a collider on a path, then we have already drawn a
bridge between the nodes that form the collider and so we can bypass the path that actually includes S itself, treating S like
any other collider in the graph. If we must condition on X to achieve ignorability, we don’t want it to ruin relevance. So we
need a path between IV and D that is not blocked by X. Finally, there are situations in which selection and/or conditioning
on X can give us relevance. Such instruments are called “ancestral” instruments, as discussed above (Van Der Zander et al.,
2015). This might arise due to X being a collider in which case conditioning on X may unblock a path between IV and D; of
course such a path would not be blocked by X and would satisfy the relevance criterion. No matter the specific type of path
or paths that yield relevance, the key idea of relevance is simple: that IV and D should relate along some unblocked path.

3.2.2 Ignorability

Ignorability is the second condition in our definition of instruments and is somewhat more subtle than relevance. It captures
the idea that, while we might not be very particular about how the instrument associates with the treatment, we want to be
very careful about how the instrument associates with the outcome. The ignorability criterion is similar to condition (i) in the
graphical criterion provided in Pearl (2009) and similar to the conditions (G2) and (G3) in the graphical criterion provided
in Elwert and Segarra (2022), but altered to indicate the special role that sample selection plays and to work with internal
selection graphs.

Definition 4 (Ignorability Criterion). A set of nodes X and a possible instrument IV in G+
S satisfy the ignorability criterion

relative to D (treatment), and Y (outcome) if
1. No element of {X,S} is a descendant of D and D is not in {X,S}.
2. X blocks every (causal and generalized non-causal) path between IV and Y except

(a) those that pass through S and
(b) those ending with a causal path from D to Y (e.g., paths between IV and Y that pass through D but where D or

one of its descendants touches a bridge or paths on which D is an ancestor of IV must be blocked by X).

Theorem 2. If a set of nodes X and a possible instrument IV in internal selection graph G+
S satisfy the ignorability criterion

relative to D (treatment), and Y (outcome), then Yd ⊥⊥ IV |X,S = 1.

This result is proved in Appendix C. We want the instrument to associate with the outcome only along paths that include a
causal path between the treatment and the outcome. This is because the causal paths between the treatment and the outcome
are those that we ultimately are interested in studying. So other paths that associate the instrument and the outcome are a
problem for instrumental variables approaches. If the instrument were associated with the outcome along some other type of
path, we would not be able to disentangle the association between the instrument and the outcome from the association that
runs from the instrument to the treatment and then to the outcome along causal paths between the treatment and outcome
alone. The latter contains the relationship we want to study, namely the causal relationship between the treatment and the
outcome. The ignorability criterion formalizes these ideas. Our ignorability criterion leaves the types of paths between IV
and Y that we want to leverage unblocked and requires us to block the types of paths that introduce variation between IV
and Y that can contaminate our analysis.

4 Discussion
We now have all the necessary machinery in place to start analyzing how sample selection can threaten or provide opportunities
for relevance and ignorability and, hence, instruments. Canan et al. (2017); Swanson et al. (2015); Swanson (2019); Hughes
et al. (2019); Ertefaie et al. (2016); Gkatzionis and Burgess (2018); Hernán and Robins (2020) all discuss sample selection and
instruments. But none of these provide a formal framework for analyzing the implications of sample selection for instrumental

14There are also problems associated with weak associations between the instrument and treatment. These are referred to as the weak instruments.
In this paper, we focus on whether relevance holds at all and not on whether the instrument is a weak instrument. Fortunately, relevance is a
condition that can actually be tested with data. Further discussion of this is also outside the scope of this paper.
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variables, where we can have an arbitrary causal graph and selection mechanism. We start in this section by briefly considering
some simple examples.

Figure 2 provides a good starting place. When sample selection is not causally related to any of the other variables
in the causal model and we have the canonical instrumental variables graph, as in Figure 2(a), we see that we can easily
verify relevance and ignorability, where X is the empty set. There is a causal path connecting IV and D, giving relevance.
The empty set blocks all paths between IV and Y , except for one that ends in a causal path from D → Y and S is not a
descendant of D and D ̸∈ {X,S}, giving ignorability.

Figure 2(b,c) both also meet the relevance and ignorability criteria, as the reader can verify for themselves. Figure 2(b) is
interesting in that the instrumental variables approach here can actually be used to overcome both the unobserved confounding
between D and Y from U as well as the sample selection bias between D and Y , even when U , U1, and U2 are all unobserved.
Figure 2(c) is an example of an ancestral instrument that only satisfies the relevance criterion due to the purely statistical
association created by sample selection. Perhaps there are opportunities to exploit these types of sample selection mechanisms
that have been underappreciated. We will discuss settings like Figure 2(b,c) in more detail in a subsequent section.

Figure 2(d) is interesting in that it shows that selection on the treatment actually leads to a violation of the ignorability
criterion. In simple covariate adjustment approaches (i.e., not instrumental variables), selection based on the treatment is, on
its own, not biasing. See Rohde and Hazlett (20XX) for details. However, in the instrumental variables case, such a selection
mechanism clearly does not satisfy the ignorability criterion. This is perhaps the simplest example for which sample selection
does not operate in the same way for covariate adjustment approaches and instrumental variables. Researchers should not
assume sample selection can be treated similarly in these two approaches. Figure 2(e) is a simple example of how, as in
simple covariate adjustment approaches, selection on the outcome can violate ignorability. Together, these demonstrate that
heuristics from other research designs should not be applied to instrumental variables without thoughtful consideration or the
use of formal design-specific criteria, like those in this paper and Rohde and Hazlett (20XX). We emphasize to the reader that
one cannot credibly ascertain the implications of sample selection on an instrumental variables (or any other design) without
laying out how sample selection fits into the causal model and using tools like internal selection graphs and our graphical
criteria. Less formal approaches will not confer the same assurance that the researcher has not missed some subtle alteration
that sample selection makes to the relationships in the data. In the following discussion, we look at more examples aimed at
exploring the various ways that sample selection can alter instrumental variables approaches.

4.1 Interesting cases
We now consider settings in which the way that sample selection interacts with the instrumental variables design is perhaps
underappreciated or under-discussed. These cases highlight potential opportunities in which to use instrumental variables and
also illustrate how sample selection can threaten internal validity of instrumental variables. We hope they are thought-provoking
to the reader.

4.1.1 Instrumental variables can be used to recover from sample selection

There are settings in which sample selection can create generalized non-causal paths between the treatment and the outcome,
and hence bias designs other than instrumental variables, but for which an instrumental variables design can overcome the
sample selection bias. This setting has been recognized elsewhere in the literature. (Swanson, 2019) See Figure 2(b) for a
simple example. The particular form shown in Figure 2(b) is commonly called “M-Bias.” More generally, an instrumental
variables approach could be used to overcome sample selection bias that takes the form of a generalized non-causal paths
running between the treatment and outcome created by sample selection (i.e., containing a bridge) that start with an arrow
pointing into the treatment. There are really two equivalent ways to look at such settings. One is that instrumental variables is
immune to this type of sample selection bias. The other is that instrumental variables is an approach that could be used when
this form of sample selection bias is suspected to threaten the validity of simple covariate adjustment approaches. Both views
are interesting. The former is useful to know when a researcher plans to employ instrumental variables before considering
sample selection. The latter actually presents opportunities for which instrumental variables approaches might be employed
that are not currently common. For example, if a researcher suspects that they have a sample selection M-bias problem, they
can use an instrumental variables approach to overcome this bias, when a suitable instrument exists.

4.1.2 Ancestral instruments via sample selection

Another interesting case arises when we consider how sample selection can alter relevance. Above, we mentioned the idea of
“ancestral” instruments. These are instruments that meet the relevance criterion only when we condition on some covariate(s).
(Van Der Zander et al., 2015) It turns out that sample selection can also create ancestral instruments. This is another
setting that has been mentioned in the literature (Hernán and Robins, 2020) but is not widely used or discussed and presents
additional opportunities for the use of instrumental variables. A simple version of this appears in Figure 2(c). In this setting,
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U∗ is an unobserved but causal instrument. Sample selection creates a purely statistical relationship between IV and U∗ in
the sample at hand. It is then easy to verify that IV satisfies both the relevance and ignorability criteria. So we can view IV
as a proxy for the causal instrument U∗. See the Appendix for an example of how, in this setting, we can identify a causal
effect using a monotonicity assumption.

While this setting at first sounds quite promising, we urge caution. The nature of this setting makes it likely that there
will be violations of ignorability. This setup is only useful if the causal instrument, U∗, is unobserved but is not a common
cause to the wrong variables. For instance, ignorability will be violated if U∗ is also a parent of Y or U or if there is an
unobserved common cause of U∗ and Y or various other relationships that might arise in realistic settings. So, while ancestral
instruments that arise from sample selection might be intriguing, great care should be taken in evaluating whether ignorability
holds for them.

4.1.3 Restricting to units that receive two treatments when more exist

Swanson et al. (2015); Ertefaie et al. (2016) discuss the common practice of employing instrumental variables approaches to
study how two particular treatments or treatment levels compare, where the sample is limited to units receiving these two
treatments, but where more than two treatments are possible. Such studies suffer from selection on the treatment, which, as
we can see in Figure 2(d), can violate ignorability and bias effect estimates. However, the “ensuing selection bias that occurs
due to this restriction has gone relatively unnoticed” and is “pervasive.” (Swanson et al., 2015) We echo that this and similar
practices are a problem as they violate ignorability.

4.1.4 Randomized experiments can have sample selection problems

Random experiments are often held as the gold-standard for causal inference. However, they are not impervious to threats to
validity. Often experiments, especially when related to human subjects, have non-compliance with assigned treatments. This
means that participants choose not to, say, take a drug when they’ve been prescribed it. Which participants choose not to
comply could have common causes with the outcome, confounding the treatment-outcome relationship. Instrumental variables
can be used to address this non-compliance by using assigned treatment as an instrument for whether or not someone is
actually treated (e.g., actually takes the drug). A second threat to the validity of randomized experiments is differential
attrition from the study. This means that some participants or units drop out of the study and so complete data is not
available for all participants. It is possible for the attrition to be post treatment or post outcome. When both non-compliance
and attrition both occur, a researcher might be in a scenario where, despite randomly assigning treatment, they are attempting
to use instrumental variables to analyze their experiment and also be concerned about sample selection. The simplest forms of
this would be captured by Figure 2(d) and (e). Despite the randomization of treatment assignment and no violations of the
exclusion restriction, there are violations of ignorability and effect estimates will be biased. Alternatively, if attrition is based
on the instrument and there is a common cause of attrition and the outcome, we might also have a violation of ignorability.
See Montgomery et al. (2018) for a very useful discussion about post-treatment conditioning and selection in randomized
experiments in political science and the bias that can result.

4.1.5 Sample selection can make and break both ignorability and relevance

As we saw with ancestral instruments, sample selection can sometimes help provide relevance. This is also true for ignorability.
See Figure 3(a) and (b). However, it can also create ignorability while breaking relevance, as in Figure 3(c). Similarly, sample
selection can also create relevance while breaking ignorability. See Figure 3(d) and (e). At first, glance these last two example
may seem like they satisfy ignorability. While paths like IV D → Y are allowed since they contain D → Y , IV D also
creates the path IV D ← U → Y , which breaks ignorability.

4.1.6 Small changes to the causal graph matter

We’ve stressed the importance of including a sample selection node in every causal graph. We now stress that great care must
be taken in constructing causal graphs containing sample selection node. In Figure 4 we see the same graph as in Figure 2(b)
but where we flip the direction of just one edge. The conclusions for the two variations on the graph are opposites. In Figure
4(a) we satisfy the ignorability criterion but in Figure 4(b) we do not. Researchers need to be careful about the details of the
causal graph that they are studying. Including a sample selection node in every causal model and careful consideration of the
sample selection mechanisms is required to determine the threat that sample selection poses to internal validity and what,
if anything, might be able to be done. There is also potential for users to intentionally or unintentionally favor one graph
over another very similar graph in order to show that ignorability holds. These are difficult but inherent problems in causal
study and good-faith efforts to do credible causal inference should spend ample time defending the specific causal model being
analyzed.
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Figure 3: Sample selection can make and break both ignorability and relevance
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Figure 4: Small changes to the causal graph matter
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4.1.7 Blocking non-causal paths between treatment and outcome can invalidate instruments

The final interesting case we consider again cautions against applying heuristics from simple covariate adjustment approaches
(or other designs) in the instrumental variables setting. In both simple covariate adjustment and instrumental variables, we
want to learn about the causal effect of the treatment on the outcome. In a covariate adjustment setting, we attempt to
un-confound the true treatment effect by blocking non-causal paths between the treatment and the outcome. We can reduce
the bias of our estimates by limiting the number of non-causal paths that run between the treatment and the outcome. Doing
so helps to make the treated group comparable to the untreated group (assuming a binary treatment), making a comparison
of these groups useful for causal analysis. We employ instrumental variables approaches only when we cannot block all the
non-causal paths between the treatment and the outcome. And when this is the case, there are settings in which blocking
non-causal paths between the treatment and the outcome can actually lead to violations of the ignorability we need for
instruments. This can happen even if we would have had a valid instrument before blocking the non-causal paths between the
treatment and the outcome. See Figure 5 for three examples. Note that not all of these examples hinge on sample selection
creating bias. In these examples, conditioning on W would block a non-causal path between the treatment and the outcome
but open others between IV and Y , even though no open non-causal paths existed between IV and Y before conditioning on
W .

4.1.8 More examples

Tables 1 - 5 contain numerous example internal selection graphs. Table 1 contains examples in which both relevance and
ignorability hold without any covariate adjustment. The examples in this table are similar to things we’ve already seen. Table
2 also contains examples in which both relevance and ignorability hold without any covariate adjustment. But these examples
have a somewhat different flavor. In some, selection is blocking otherwise problematic paths; in others, sample selection does
not violate relevance but might weaken the strength of the instrument, which can pose problems for estimation. Table 3
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Figure 5: Blocking non-causal paths between treatment and outcome can invalidate instruments
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contains examples in which relevance and ignorability hold only after we condition on some covariate. If these covariates are
not observed, these settings will have problems, but when they are observed we can use an instrumental variables approach.
Table 4 explores various ways that ignorability can be violated by sample selection as well as by things other than sample
selection. Sample selection can pose many threats to ignorability, as can common causes or the instrument and outcome or
causal paths from the instrument to the outcome. Finally, Table 5 looks at a couple ways that sample selection could violate
relevance. When considering sample selection, we should not exclusively worry about threats to ignorability. We additionally
provide some more examples in Appendix B, including an internal selection graph for all the DAGs considered in Hughes et al.
(2019). These greatly simplify the analysis necessary to determine the threats that sample selection poses.

We hope the settings discussed in this section provide some further insight into how sample selection can effect instrumental
variables. We again stress that, without incorporation of the sample selection mechanism into the causal model and use of a
formal framework like that presented here, there is no reliable way to determine how sample selection might alter relevance or
ignorability for your specific instrumental variables application.

4.2 Lessons
After considering numerous examples, we are in a position to review some of what we’ve learned. Let us finally review key
lessons to round out our discussion.

• Only the incorporation of the sample selection mechanism into the causal model can reliably lead to correct conclusions
about how sample selection might effect instrumental variables. Moreover, graphical analysis and a formal framework for
the analysis of sample selection can greatly reduce the burden on researcher in analysis of how sample selection alters
their instrumental variables approach. Standard causal graphs often omit important background variables and require
the user to remember that certain paths are open. These difficulties increase with the complexity of the causal graph.

• Informal applications of simple heuristics related to sample selection can be misleading and should be avoided. Further,
we should not use heuristics from other research designs, like simple covariate adjustment, in the instrumental variables
setting. These might not apply (e.g., like selection on the treatment being non-biasing) and can result in unreliable
conclusions.

• Sample selection can influence instrumental variables, even when it is not a collider. Whether selection is a collider,
confounder, mediator, or indirectly related to variables of interest, the relevance and ignorability criteria provide clear
guidance on this.

• When sample selection manifests as attrition or some other post-treatment type of selection, randomization of treatment
or instrument assignment does not automatically ameliorate problems of sample selection even for internal validity.
Therefore, the discussion here is not exclusively for observational studies.

• Sample selection does not always present a problem. An application of the graphical criteria presented here is the best
way to be sure.

• Selection on the outcome is usually a problem for instrumental variables. However, association of the outcome and
selection does not automatically present a problem. When a third variable causes both and the two are only indirectly
related, there may be no problem.

• Post-treatment selection is typically a problem on its own.
• Indirect association between selection and the outcome or selection and the treatment are typically not problems on

their own and also typically not when they appear together for instrumental variables.
• There are various ways that sample selection can threaten relevance and ignorability.
• There are also opportunities presented by sample selection for instrumental varibles as well as by instrumental variables
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for sample selection. See the previous section.
• Actual identification of causal effect requires more than just relevance and ignorability. We also need assumptions

like homogeneous treatment effects, monotonicity, or one-sided non-compliance. See the Appendix for examples of
identification.

In conclusion, instrumental variables approaches leverage specific types of variation between the instrument and treatment
and the instrument and outcome to identify causal effects of the treatment on the outcome. We’ve seen how these associations
can be altered in a non-randomly selected sample in a variety of ways. Sample selection can create many wrinkles in an
instrumental variables analysis but is not necessarily a death blow. But the already high bar of finding a good instrument
is only made higher by responsibly considering how sample selection can influence instruments. We hope that the tools,
examples, and lessons in this paper can provide additional caution, clarity, and credibility to researchers that hope to use
instrumental variables.
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Table 1: Relevance and Ignorability Criteria Satisfied without Covariate Adjustment - Part 1
Relations with Selection Internal Selection Graph Explanation

Selection unrelated to key
variables

IV D Y

U

S

UIV UD UY

Let the covariate conditioning
set be X = {∅}. The relevance
criterion is satisfied by the path
IV → D. So, by Theorem 1,
IV ̸⊥⊥ D|S = 1. Conditions 1
and 2 of the ignorability criterion
are satisfied and are easy to
verify. No generalized non-causal
paths between IV and Y that do
not pass through S or D exist.
No generalized non-causal paths
between IV and Y that pass
through D but on which D
touches a bridge exist. Therefore,
condition 3 of ignorability
criterion is satisfied and, by
Theorem 2, IV ⊥⊥ Yd|S = 1.

Selection indirectly related to
treatment or outcome

IV D Y

U

S

U1

UIV UD UY
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U1 U2
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U2WUW
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Same as above. Note that condi-
tioning on W would violate ignor-
ability.

Selection induced ancestral
instrument

IV D Y

U

S
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Same as above.

IV D Y

U

S

Z

U1

UIV UD UY

Selection on the outcome; sharp
null

IV D Y

U

S

UIV UD UY
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Table 2: Relevance and Ignorability Criteria Satisfied without Covariate Adjustment - Part 2
Relations with Selection Internal Selection Graph Explanation

Selection blocking paths

IV D Y

S

UIV UD UY

Let the covariate conditioning
set be X = {∅}. The relevance
criterion is satisfied by the path
IV → D. So, by Theorem 1,
IV ̸⊥⊥ D|S = 1. Conditions 1
and 2 of the ignorability criterion
are satisfied and are easy to
verify. No generalized non-causal
paths between IV and Y that do
not pass through S or D exist.
No generalized non-causal paths
between IV and Y that pass
through D but on which D
touches a bridge exist. Therefore,
condition 3 of ignorability
criterion is satisfied and, by
Theorem 2, IV ⊥⊥ Yd|S = 1.

IV D Y

S

UIV UD UY

IV D Y

U S

UIV UD UY

Selection weakening instrument

IV D Y

U

S

UIV UD UY

IV D Y

U

S

UIV UD UY

IV D Y

U

M S

UIV UD UY

UM

IV D Y

U

M S

UIV UD UY

UM
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Table 3: Relevance and Ignorability Criteria Satisfied with Covariate Adjustment
Relations with Selection Internal Selection Graph Explanation
Post-instrument selection and
selection indirectly related to
outcome

IV D Y

S Z

UIV UD UY

Let the covariate conditioning
set be X = {Z}. The relevance
criterion is satisfied by the path
IV → D. So, by Theorem 1,
IV ̸⊥⊥ D|Z, S = 1. Conditions 1
and 2 of the ignorability criterion
are satisfied and are easy to
verify. The generalized
non-causal path between IV and
Y that passes through Z is
blocked by conditioning on Z.
Therefore, condition 3 of
ignorability criterion is satisfied
and, by Theorem 2,
IV ⊥⊥ Yd|Z, S = 1.

Selection as descendant of media-
tor between instrument and out-
come

IV D Y

Z S

UIV UD UY

UZ

Selection as child of confounder

IV D Y

S

Z

UIV UD UY

Ancestral instrument

IV D Y

U

W

S

U1

UIV UD UY

Let the covariate conditioning set
be X = {W}. The relevance
criterion is satisfied by the path
IV → W ← U1 → D. So, by
Theorem 1, IV ̸⊥⊥ D|W,S = 1.
The ignorability criterion is satis-
fied and is easy to verify. So, by
Theorem 2, IV ⊥⊥ Yd|W,S = 1.
Note that in this case, we might
consider using W as a proxy in-
strument, rather than IV as an
ancestral instrument, since the as-
sociation with the treatment is
likely to be stronger.
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Table 4: Ignorability Criterion Not Satisfied
Relations with Selection Internal Selection Graph Explanation

Violation of ignorability
unrelated to sample selection

IV D Y

U

S

UIV UD UY

We can see that condition 2 of
the ignorability criterion is vio-
lated. The generalized non-causal
path IV ← D ← U → Y cannot
be blocked. So IV ̸⊥⊥ Yd|S =
1. Note that a simple unob-
served confounder of IV and Y
or a causal path that cannot be
blocked from IV to Y would also
violate ignorability in a manner
unrelated to sample selection.

Sample selection violates
ignorability

IV D Y

U

S

UIV UD UY

We can see that condition 3 of
the ignorability criterion is
violated. Generalized non-causal
paths between IV and Y that do
not run through S or through D
exist or generalized non-causal
paths between IV and Y that
run through D on which D or its
descendants touch a bridge exist.
So IV ̸⊥⊥ Yd|S = 1.

IV D Y

U

S

UIV UD UY

IV D Y

U

S

U1

UIV UD UY

UU1

IV D Y

U

S

U1 U2

UIV UD UY

UU1

IV D Y

U

S

U2

UIV UD UY

IV D Y

U

S

U1

UIV UD UY

IV D Y

U

S

UIV UD UY
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Table 5: Relevance Criterion Not Satisfied
Relations with Selection Internal Selection Graph Explanation

Sample selection violates
relevance

IV D Y

U

S

UIV UD UY

We can easily see that the
relevance criterion is violated
since sample selection is blocks
the path from IV to D.

IV D Y

U

S

UIV UD UY
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A Demonstrations of Identification
Here we demonstrate a few ways that we can use relevance, ignorability, and some additional assumptions to identify causal
quantities. There are many other additional assumptions that could work. While a causal model may satisfy relevance and
ignorability, this does not mean that the additional assumptions of the type discussed in this section will be weak assumptions
or believable. Equal care is required in making these assumptions as is required in developing your causal model and assessing
relevance and ignorability. Further, not all causal graphs that satisfy relevance and ignorability will be amenable to all
additional assumptions that you might want to make; an example is shown in the discussion of monotonicity below, where we
need stronger assumptions on the causal graph than are required by just relevance and ignorability alone.

A.1 Homogeneous Treatment Effects
We start simply by considering a homogeneous or constant treatment effects setting. This draws from Angrist and Pischke
(2008) and Cunningham (2021). Such a setup assumes that the potential outcomes for each unit in the selected sample can be
written as

[Yd,i = α+ δd+ γUi + ϵi|S = 1]

where U is some unobserved variable that would appropriately block all non-causal paths between Y and D and give
conditional ignorability conditional: Yd ⊥⊥ D|U, S = 1. Here, δ is the average treatment effect in the sample, as well as the
treatment effect for each unit in the sample. We see that this means that the observed Yi’s in the selected sample can be
written as

[Yi = α+ δDi + γUi + ϵi|S = 1]

We next assume that that we have a variable IV , our instrument, such that Cov[IV,D|S = 1] ̸= 0. This is a specific
form of relevance: D ̸⊥⊥ IV |S = 1. Simply assuming D ̸⊥⊥ IV |S = 1 does not garauntee Cov[IV,D|S = 1] ̸= 0. But
assuming Cov[IV,D|S = 1] ̸= 0 =⇒ D ̸⊥⊥ IV |S = 1. So we’re assuming D ̸⊥⊥ IV |S = 1 and a little more. Finally,
we assume ignorability: Yd ⊥⊥ IV |S = 1. Yd ⊥⊥ IV |S = 1 =⇒ Cov[IV, U |S = 1] = 0 and Cov[IV, ϵ|S = 1] = 0. If
Cov[IV, U |S = 1] ̸= 0 or Cov[IV, ϵ|S = 1] ̸= 0 then there would be a path from IV to Y (through U or ϵ, respectively) that
would violate Yd ⊥⊥ IV |S = 1. So we have Cov[IV,D|S = 1] ̸= 0,Cov[IV, U |S = 1] = 0 and Cov[IV, ϵ|S = 1] = 0. We can
then identify δ, the average treatment effect in the sample, as follows:

Cov[Y, IV |S = 1] = Cov[α+ δD + γU + ϵ, IV |S = 1] by plugging in for Y

= δCov[D, IV |S = 1]︸ ︷︷ ︸
̸=0

+γ Cov[U, IV |S = 1]︸ ︷︷ ︸
=0

+Cov[ϵ, IV |S = 1]︸ ︷︷ ︸
=0

= δCov[D, IV |S = 1]

=⇒ δ =
Cov[Y, IV |S = 1]

Cov[D, IV |S = 1]
=

Cov[Y, IV |S = 1]/Var[IV |S = 1]

Cov[D, IV |S = 1]/Var[IV |S = 1]
=

Reg. Coef.[Y, IV |S = 1]

Reg. Coef.[D, IV |S = 1]

A.2 One-Sided Non-Compliance
Next we consider heterogeneous treatment effects with a one-sided non-compliance assumption. This will often be applicable
in randomized control trials with non-compliance. This draws from Angrist and Pischke (2008). We assume we have a binary
treatment, that we have one-sided non-compliance (P (D = 1|IV = 0, S = 1) = 0), relevance (D ̸⊥⊥ IV |S = 1 which implies
P (D|IV = 1, S = 1) ̸= P (D = 1|IV = 0, S = 1) = 0), and ignorability (Yd ⊥⊥ IV |S = 1). We also note that we can write
observed outcomes as Yi = (1−Di)Y0,i +DiY1,i = Y0,i + (Y1,i − Y0,i)Di. Next we show that

E[Y |IV = 1, S = 1] = E[Y0,i + (Y1,i − Y0,i)Di|IV = 1, S = 1]

= E[Y0,i|IV = 1, S = 1] + E[(Y1,i − Y0,i)Di|IV = 1, S = 1]

and
E[Y |IV = 0, S = 1] = E[Y0,i + (Y1,i − Y0,i)Di|IV = 0, S = 1]

= E[Y0,i|IV = 0, S = 1] + E[(Y1,i − Y0,i)Di|IV = 0, S = 1]

= E[Y0,i|IV = 0, S = 1] + E[(Y1,i − Y0,i)Di|D = 0, IV = 0, S = 1]

since IV = 0 =⇒ D = 0

= E[Y0,i|IV = 0, S = 1]

= E[Y0,i|IV = 1, S = 1] since Yd ⊥⊥ IV |S = 1
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Therefore,

E[Y |IV = 1, S = 1]− E[Y |IV = 0, S = 1] = E[(Y1,i − Y0,i)Di|IV = 1, S = 1]

= E[(Y1,i − Y0,i)Di|D = 1, IV = 1, S = 1]P (D = 1|IV = 1, S = 1)

+ E[(Y1,i − Y0,i)Di|D = 0, IV = 1, S = 1]P (D = 0|IV = 1, S = 1)

= E[Y1,i − Y0,i|D = 1, IV = 1, S = 1]P (D = 1|IV = 1, S = 1)

= E[Y1,i − Y0,i|D = 1, S = 1]P (D = 1|IV = 1, S = 1)

since D = 1 =⇒ IV = 1

And so we see that we can identify the ATT in the selected sample as

E[Y1,i − Y0,i|D = 1, S = 1] =
E[Y |IV = 1, S = 1]− E[Y |IV = 0, S = 1]

P (D = 1|IV = 1, S = 1)

A.3 Monotonicity
Finally, we consider heterogeneous treatment effects with a monotonicity assumption. For some additional elucidation, we
look at an example of an ancestral instrument that achieves relevance only as a result of sample selection. See Figure 6. We
can identify causal effects with a monotonicity assumption and an ancestral instrument created by sample selection so long as
there is an unobserved causal instrument that adheres to the conditions laid out by Angrist et al. (1996). We also draw on
Hernán and Robins (2006) here.

Figure 6: Ancestral instrument created by sample selection

IV D Y

U

S

U∗

UIV UD UY

We follow the simpler case presented by Hernán and Robins (2006), where the treatment and instruments are all binary.
This is for demonstration. Hernán and Robins (2006) argue that a binary causal instrument in this setting won’t be believable
and discuss a continuous version. But we stick to the simpler case here just to give the flavor of how identification might work
in this type of setting.

While relevance and ignorability are required for identification in instrumental variables, they are not sufficient and
additional assumptions are required. Additionally, whether or not a specific additional assumption (here the example will be
monotonicity) can be used might depend on details of the causal model. That is, different additional identifying assumptions
might require additional constraints on the causal model, which may or may not fit with an accurate understanding of the
underlying causal mechanisms.

In this example, we assume that IV,D,U∗ are all binary. We also make a monotonicity assumption of the form
Du∗=0 = 1 =⇒ Du∗=1 = 1. We are also assuming the causal model in Figure 6 holds. Here, IV is the observed ancestral
instrument and U∗ is the unobserved causal instrument. In this graph, we see that

1. Relevance holds: D ̸⊥⊥ IV |S = 1 which implies P (D|IV = 1, S = 1) ̸= P (D = 1|IV = 0, S = 1).
2. Ignorability holds: Yd ⊥⊥ IV |S = 1.
3. Three other key conditions hold that will be used in the following identification result: Y ⊥⊥ IV |U∗, S = 1, D ⊥⊥

IV |U∗, S = 1, and (Yd, Du∗) ⊥⊥ U∗|S = 1.
The last three conditions are extra conditions that are required for identification in what follows, but, as we saw above, are
not necessary for all instrumental variables approaches. Note that if there were a path like IV → D, the first two of these
would be violated. The last of these says that the U∗ → D relationship is not confounded and that ignorability holds for U∗.
So careful thought about the identifying assumptions you are able and willing to make is crucial.

We start by seeing that
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E[Y |IV = 1, S = 1]− E[Y |IV = 0, S = 1]

= [E[Y |U∗ = 1, IV = 1, S = 1]P (U∗ = 1|IV = 1, S = 1) + E[Y |U∗ = 0, IV = 1, S = 1][1− P (U∗ = 1|IV = 1, S = 1)]]

− [E[Y |U∗ = 1, IV = 0, S = 1]P (U∗ = 1|IV = 0, S = 1) + E[Y |U∗ = 0, IV = 0, S = 1][1− P (U∗ = 1|IV = 0, S = 1)]]

= [E[Y |U∗ = 1, S = 1]P (U∗ = 1|IV = 1, S = 1) + E[Y |U∗ = 0, S = 1][1− P (U∗ = 1|IV = 1, S = 1)]]

− [E[Y |U∗ = 1, S = 1]P (U∗ = 1|IV = 0, S = 1) + E[Y |U∗ = 0, S = 1][1− P (U∗ = 1|IV = 0, S = 1)]]

by Y ⊥⊥ IV |U∗, S = 1

= E[Y |U∗ = 1, S = 1]P (U∗ = 1|IV = 1, S = 1)− E[Y |U∗ = 1, S = 1]P (U∗ = 1|IV = 0, S = 1)

− E[Y |U∗ = 0, S = 1]P (U∗ = 1|IV = 1, S = 1) + E[Y |U∗ = 0, S = 1]P (U∗ = 1|IV = 0, S = 1)

= [E[Y |U∗ = 1, S = 1]− E[Y |U∗ = 0, S = 1]] [P (U∗ = 1|IV = 1, S = 1)− P (U∗ = 1|IV = 0, S = 1)]
And similarly we see that
E[D|IV = 1, S = 1]− E[D|IV = 0, S = 1]

= [E[D|U∗ = 1, IV = 1, S = 1]P (U∗ = 1|IV = 1, S = 1) + E[D|U∗ = 0, IV = 1, S = 1][1− P (U∗ = 1|IV = 1, S = 1)]]

− [E[D|U∗ = 1, IV = 0, S = 1]P (U∗ = 1|IV = 0, S = 1) + E[D|U∗ = 0, IV = 0, S = 1][1− P (U∗ = 1|IV = 0, S = 1)]]

= [E[D|U∗ = 1, S = 1]P (U∗ = 1|IV = 1, S = 1) + E[D|U∗ = 0, S = 1][1− P (U∗ = 1|IV = 1, S = 1)]]

− [E[D|U∗ = 1, S = 1]P (U∗ = 1|IV = 0, S = 1) + E[D|U∗ = 0, S = 1][1− P (U∗ = 1|IV = 0, S = 1)]]

by D ⊥⊥ IV |U∗, S = 1

= E[D|U∗ = 1, S = 1]P (U∗ = 1|IV = 1, S = 1)− E[D|U∗ = 1, S = 1]P (U∗ = 1|IV = 0, S = 1)

− E[D|U∗ = 0, S = 1]P (U∗ = 1|IV = 1, S = 1) + E[D|U∗ = 0, S = 1]P (U∗ = 1|IV = 0, S = 1)

= [E[D|U∗ = 1, S = 1]− E[D|U∗ = 0, S = 1]] [P (U∗ = 1|IV = 1, S = 1)− P (U∗ = 1|IV = 0, S = 1)]
These two together mean that

E[Y |IV = 1, S = 1]− E[Y |IV = 0, S = 1]

E[D|IV = 1, S = 1]− E[D|IV = 0, S = 1]

=
E[Y |U∗ = 1, S = 1]− E[Y |U∗ = 0, S = 1]

E[D|U∗ = 1, S = 1]− E[D|U∗ = 0, S = 1]

=
E[Y0 + (Y1 − Y0)D|U∗ = 1, S = 1]− E[Y0 + (Y1 − Y0)D|U∗ = 0, S = 1]

E[D|U∗ = 1, S = 1]− E[D|U∗ = 0, S = 1]

=
E[Y0 + (Y1 − Y0)Du∗=1|U∗ = 1, S = 1]− E[Y0 + (Y1 − Y0)Du∗=0|U∗ = 0, S = 1]

E[Du∗=1|U∗ = 1, S = 1]− E[Du∗=0|U∗ = 0, S = 1]

=
E[Y0 + (Y1 − Y0)Du∗=1|S = 1]− E[Y0 + (Y1 − Y0)Du∗=0|S = 1]

E[Du∗=1|S = 1]− E[Du∗=0|S = 1]
by (Yd, Du∗) ⊥⊥ U∗|S = 1

=
E[Y0 + Y1Du∗=1 − Y0Du∗=1 − Y0 − Y1Du∗=0 + Y0Du∗=0|S = 1]

E[Du∗=1 −Du∗=0|S = 1]

=
E[(Y1 − Y0)(Du∗=1 −Du∗=0)|S = 1]

E[Du∗=1 −Du∗=0|S = 1]

=
1

E[Du∗=1 −Du∗=0|S = 1]
×

[E[(Y1 − Y0)(Du∗=1 −Du∗=0)|Du∗=1 −Du∗=0 = 1, S = 1]P (Du∗=1 −Du∗=0 = 1|S = 1)+

E[(Y1 − Y0)(Du∗=1 −Du∗=0)|Du∗=1 −Du∗=0 = 0, S = 1]P (Du∗=1 −Du∗=0 = 0|S = 1)+

E[(Y1 − Y0)(Du∗=1 −Du∗=0)|Du∗=1 −Du∗=0 = −1, S = 1]P (Du∗=1 −Du∗=0 = −1|S = 1)]

=
E[Y1 − Y0|Du∗=1 −Du∗=0 = 1, S = 1]P (Du∗=1 −Du∗=0 = 1|S = 1)

P (Du∗=1 −Du∗=0 = 1|S = 1)
by monotonicity

= E[Y1 − Y0|Du∗=1 −Du∗=0 = 1, S = 1]

And this is the average treatment effect for "compliers" in the selected sample, where compliers are defined with respect
to the causal instrument, not the ancestral instrument, as the units in the selected sample that take the treatment when
encouraged by the causal instrument but not otherwise.
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B Exercises

B.1 Exercise: Internal Selection Graphs for Hughes et al. (2019) Figure 1
In this section, we show how internal selection graphs and our graphical criteria provide a simple way to visually analyze all
the violations to ignorability that Hughes et al. (2019) discuss thorugh simulation and verbal description. We aim to showcase
the benefit of using our formal graphical framework, as opposed to case by case analysis and simulation, for understanding
how sample selection can influence instruments. Note that in this discussion, we treat C as observed and U as unobserved.
Hughes et al. (2019) consider versions of instrumental variables where they do and do not condition on C. Here, we assume
that C is used to block generalized non-causal paths when necessary, as in Figure 7C. Further, all of these examples meet
the relevance criterion. We emphasize that internal selection graphs and our graphical criteria are by no means limited to
the examples in Hughes et al. (2019) Figure 1 and provide a comprehensive framework with which researchers can evaluate
threats to the internal validity of an instrumental variables approach posed by sample selection for any causal graph and any
selection mechanism. No simulation is necessary; nor is any verbal description of the relationships between variables. Also
note that while these internal selection graphs can include many bridges, we can determine that ignorability will not hold as
soon as we find a single generalized non-causal path that cannot be blocked by covariate adjustment. In these graphs, this can
be determined fairly quickly. The internal selection graphs make clear that sample selection on the treatment and/or outcome
can create a host of purely statistical relationships in the selected data. These relationships are not immediately clear in more
standard causal graphs.

Further, as the internal selection graphs show, many of these examples are redundant in terms of highlighting different
implications for instruments from sample selection. Selection only on the treatment or only on the outcome violates ignorability
and adding additional edges does not change this. Additionally, none of these examples consider indirect relationships between
the variables and selection. Such relationships can also threaten ignorability and are discussed in other sections of this paper.
Hughes et al. (2019) also do not consider all possible direct relationships between the variables. For example, selection based
on IV and U is not discussed, but this would violate ignorability in a way that no covariate adjustment could resolve. So the
analysis by these authors, while shedding some light on the implications of sample selection for instrumental variables, covers
a quite limited range of settings that researchers might want to consider. While the authors state that "it was not possible to
investigate all possible selection mechanisms even for a single IV analysis example", we argue that our approach can address
the needs of researchers, who do not need to consider the implications of sample selection for all possible causal graphs but
only those they deem plausible.

In Figures 7, 8, and 9, the first graph in each row is taken directly from Hughes et al. (2019) Figure 1. The second is the
corresponding internal selection graph. The examples in Figure 7 all satisfy both relevance and ignorability, where we must
condition on C in Figure 7C to satisfy ignorability. We can easily see that there are violations of condition 3 of our ignorability
criterion in all the examples in Figures 8 and 9, since the generalized non-causal path IV − U → Y (along with other paths)
cannot be blocked. Our hope is that this section highlights that the graphical framework developed in the present paper
goes quite a bit beyond other recent investigations in terms of exploration of how sample selection can influence instrumental
variables approaches, makes such analysis simple and graphical, and can illuminate connections not available otherwise.

B.2 Exercise: Trust and Support for Redistribution
Peyton (2020) investigates whether political trust increases support for re-distributive policies. The author uses an instrumental
variables design using online survey data in which individuals are randomly assigned into instrument groups. The instrument
groups are aimed at altering the participant’s political trust. Resulting measures of trust in government from the participants
are then used as the treatment variable and measures of support for redistribution are used as the outcome. The design can
be drawn as in Figure 10. The author conducts placebo experiments to test the exclusion restriction, and randomization
ensures no common causes of instrument group and outcome.

The author uses data from three online surveys (two conducted by Amazon Mechanical Turk and one conducted by
Qualtrics Panels) in which subjects completed a short survey covering their demographics and partisanship and were then
randomly assigned into one of three groups: honest, corrupt, or control. The honest group was provided materials (editorial
articles and in one experiment data visualizations) that "emphasized the integrity of government officials and low levels of
political corruption." The corrupt group was provided materials that "used contrasting language about the lack of integrity
among government officials and the prevalence of political corruption." The control group was provided materials unrelated to
politics (related to Anthony Bourdain in two experiments and to recycling in the other). The online appendix for Peyton
(2020) includes details on how trust and support for redistribution were measured.

Let us consider the sample selection mechanism. First, while Peyton (2020) states that "MTurk workers tend to skew
white, educated, and liberal (see Berinsky, Huber and Lenz, 2012)," this is not necessarily a threat to the internal validity of
instrumental variables estimates. For the purposes of this exercise, we assume that these characteristics are not related to
attrition from the sample and that the measured versions of these are sufficient to block an violations of ignorability that are
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Figure 7: Hughes et al. (2019) Figure 1 A, B, C: Ignorability is Satisfied
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unrelated to sample selection. Peyton (2020) shows that the Qualtrics Panels experiment is approximately representative of
the US general population.15

We turn to components of the sample selection mechanism that might be more threatening to ignorability. In two of
three experiments, small numbers of participants "asked to have their data removed from the experiment after learning about
deception in the debrief." These amounted to 4.3% (29/672) of participants in experiment and 8.8% (128/1452) of participants
in experiment 2. Participants were not allowed to ask to be excluded after the third experiment. These participants were
excluded from the study. In both cases, the author finds no statistical evidence that instrument group assignment is associated
with these removal requests. It is important to note that the author does not present whether these removal requests were
associated with different levels of trust in government or in support for redistribution. These associations (with sample
selection and treatment and outcome) are potential threats to internal validity. Though since the instrument effects the
treatment and outcome there could be a relationship with the instrument if selection is related strongly to treatment or
outcome. However, if the relationship is relatively small or if the first stage is sufficiently weak, we will not see a relationship
with the instrument and these individuals.

In addition to these notes, we might consider whether pre-existing social, political, and institutional trust are common
causes of both political trust as measured in the experiments (after the participants reviewed instrument group material)
and of self-selection into the sample. The argument might be that social, political, and institutional trust extend to trust of
polling, survey, and academic studies, which would then alter how likely you might be in participating in an experiment like
those in Peyton (2020) in the first place and also to asking to be removed from the sample later on. We might also wonder if,
as we discuss above, the political trust measured in the experiments was a direct cause of people to ask to be removed from
the sample. It seems plausible that pre-existing trust levels might influence the participation decision and certainly would be
possible for the "mid experiment" trust to be an influence on asking to be removed from the sample. It also may be that
some of the common causes of trust and support for redistribution might also be causes of deciding whether to participate in
the study.

Let’s look at how these different sample selection mechanisms might threaten ignorability by extending the causal graph
to be an internal selection graph and considering our graphical criteria. See Figure 11. In all cases, relevance will not be a
problem, and we focus on ignorability. In Figure 11, W represents pre-existing social, political, and institutional trust; U is all
unobserved factors; and S is sample selection (participating in the experiments).

In Figure 11(a), we look at the case where pre-existing social, political, and institutional trust are common causes of both
political trust as measured in the experiments and of self-selection into the sample and where some of the common causes of

15"All quotas were approximately met, so this sample is a reasonable approximation to a nationally representative sample of Americas [sic] on
these observables."
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Figure 8: Hughes et al. (2019) Figure 1 D, E, F: Selection on the Treatment
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trust and support for redistribution also influence deciding whether to participate in the study. In Figure 11(b), we look at
the case where political trust measured in the experiments was a cause of people to ask to be removed from the sample. In
Figure 11(c), we look at the combination of these.

Based on the evidence cited by the author (i.e., that there was no statistical relationship between the instrument and
attrition), it is likely that the purely statistical relationships created as a result of direct selection on the treatment are likely
to be small. So Figure 11(a) might present the most realistic causal model. In this case, it turns out that we can indeed
satisfy our ignorability criterion, as there are no generalized non-causal paths from IV to Y and all causal paths run through
D. So the instrumental variables approach in Peyton (2020) do not seem to face much of a threat to ignorability from sample
selection. Moreover, the instrumental variables design actually allows Peyton (2020) to overcome non-causal relationships
between the treatment and outcome that result from confounding and sample selection. We emphasize this is perhaps an
underappreciated feature of instrumental variables - that it can overcome certain forms of sample selection bias.

This application provides a good example of what might threaten internal validity and ignorability. If the individuals
that asked to be excluded from the sample had been strongly associated with the instrument groups or if they are associated
with the treatment, despite not being associated with the instrument groups, and this was caused by their political trust
measured in the experiments, then ignorability would not hold, as is shown in both Figure 11(b) and (c). In these cases, only
conditioning on the unobserved factors, U , would allow us to meet the ignorability criterion. However, the fact that these
factors are unobserved was the reason for using an instrumental variables design in the first place. In the next section, we put
aside the fact that it is unlikely that there was attrition based directly on the treatment in reality and simulate how things
might change if this did occur.
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Figure 9: Hughes et al. (2019) Figure 1 G, H, I: Selection on the Outcome
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Figure 10: Peyton (2020) DAG
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B.2.1 Selection on Treatment Simulations

We use the results and data from Peyton (2020) as inspiration for simulations in which we impose strong selection on the
treatment. This will allow us to see how selection on the treatment can bias effect estimates in a fairly realistic setting. First,
we replicate the first stage, reduced form, and 2SLS estimates from the Petyon paper. We directly use the code and data
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provided in the supplementary materials for Peyton (2020). This can be seen in the first three rows of Table 6. We see a
strong first stage (FS) but no effect for the reduced form (RF) or local average treatment effect (LATE; the instrumental
variables estimate).16

Our simulations start by fitting a simple linear model for both the treatment and the outcome to the control units (in
Peyton (2020) the control units received the placebo treatment with materials not related to political trust). We then use these
models to simulate the control potential treatments and outcomes for all units. Next, we simulate the observed treatments as
the control potential treatments plus the constant first stage effect we estimated from the experimental data (multiplied by a
centered version of the instrument) plus noise. we simulate the observed outcomes as control potential outcomes plus the
constant treatment effect we estimated from the experimental data (multiplied by our simulated observed treatments) plus
noise. We also simulate an unobserved confounder between the treatment and outcome. This confounder is important, as
selection on the treatment will create a purely statistical relationship between this confounder and the instrument. At this
point, we have simulated treatments and outcomes in which there are constant first-stage and treatment effects.

The rest of the exercise consists of looking at different types of sample selection to see how the resultant violations (or not)
of ignorability bias effect estimates. We first estimate the reduced form and average treatment effect under no selection bias
(i.e., using the full sample). These results can be seen in the fourth and fifth rows of Table 6. We again see no reduced form or
average treatment effect.

Next we estimate the reduced form and average treatment effect with selection on the treatment. The selection mechanism
gives individuals with less than the median value for the treatment (trust) a 20% chance of being selected. The selection
mechanism gives individuals with greater than or equal to the median value for the treatment an 80% chance of being selected.
Selection here might be thought of as low levels of trust causing individuals to not trust the researchers and hence asking
to be excluded from the study more frequently. We recognize that the selection mechanism is extreme and not necessarily
realistic. However, our goal is to demonstrate how selection can bias effect estimates, not to be entirely realistic. These results
can be seen in the sixth and seventh rows of Table 6. Here, we see a negative reduced form and average treatment effect for
which the confidence intervals do not include zero.

Finally, we also estimate the reduced form and average treatment effect from the data selected based on the treatment but
where we also adjust for the confounder we built in. Our ignorability criterion shows that if we condition on this, we will
achieve ignorability. In practice we would not be able to condition on this sort of variable, as these are generally the reason
we need to use instrumental variables in the first place. On that note, we also estimate the average treatment effect using
simple covariate adjustment (not instrumental variables). These results can be seen in the last three rows of Table 6. As
expected, we again see no effects.

Through this exercise we’ve seen how sample selection on the treatment can bias effect estimates for instrumental variables
by violating ignorability both graphically and through simulation. We’ve also seen how, if it is possible to gather data on the
right covariates, we might be able to statistically adjust for violations of ignorability. In the following section, we’ll dig into
some more interesting cases.

Table 6: Peyton (2020) Selection on Treatment Simulation

Selection Estimand Estimate SE CI Low CI High DF
True Value in Simulation (i.e., Peyton Results) FS 0.611 0.041 0.532 0.691 3716

RF 0.006 0.032 -0.057 0.070 3718
LATE 0.011 0.053 -0.093 0.116 3716

No Selection Simulation RF -0.015 0.063 -0.138 0.109 3718
ATE -0.025 0.107 -0.234 0.185 3718

Selection on Treatment Simulation RF -0.240 0.081 -0.399 -0.081 1884
ATE -0.477 0.191 -0.851 -0.102 1884

Selection on Treatment Simulation, Adjust for
U

RF 0.008 0.011 -0.014 0.030 1883

ATE 0.013 0.019 -0.024 0.051 1883
ATE – Covari-
ate Adjustment
Only

0.026 0.014 -0.002 0.054 1883

16See [CITES] for discussion of first stage, reduced form, and local average treatment effects.
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C Technical Appendix
Here we provide technical details and prove the results found in the main text. First, we introduce a series of definitions.
These are followed by a series of lemmas. Finally we state our main results in a set of theorems that follow directly from the
lemmas.

C.1 Definitions
Definition C.1 (SCM (adapted from Pearl (2009))). A structural causal model, M , has the following parts

1. U is a set of background variables determined by exogenous factors;
2. V is a set {V1, V2, . . . , Vn} of variables determined by variables in the model;
3. F is a set {f1, f2, . . . , fn} of functions that map fi : Ui ∪ PAi → Vi, where Ui ⊂ U and PAi ⊂ V \Vi and the entire set

F forms a mapping from U to V . That is, each fi assigns a value to Vi that depends on the values of a select set of
variables in V ∪ U (vi = fi(pai, ui)), and the entire set F has a unique solution F (u).

4. p(u) =
∏

p(uj) is a probability function defined over the domain of U .

Definition C.2 (Sub-Model (adapted from Pearl (2009))). Let M be a causal model, D be a set of variables in V , and d a
particular realization of D. A submodel Md of M is the causal model Md, where F is replaced with Fd, which is formed by
deleting the functions for the variables in D and replacing them with constant functions D = d.

Definition C.3 (Potential Outcome (adapted from Pearl (2009))). Let D and Y be two subsets of variables in V . The
counterfactual values of Y when D had been set to d, written Yd, is the solution for Y of the set of equations Fd, given the
realized values of the background variables, U .

Definition C.4 (Causal Graph (adapted from Shpitser et al. (2010), also see Pearl (1988, 2009))). A SCM induces a causal
graph in the following way. Each variable in the model is represented by a node. A node corresponding to variable Vi has edges
pointing to it from every variable whose value is used to determine the value of Vi by the function fi. Exogenous variables
have no edges pointing to them. A causal graph is an I-map (see Definition C.11 below) for p(v).

Definition C.5 (Path). A path is a sequence of edges in G where each pair of adjacent edges in the sequence share a node,
and each such shared node can occur only once in the path.

Definition C.6 (Causal Path). A causal path from D to Y is a path from D to Y on which all edges are directed and point
away from D and toward Y .

Definition C.7 (Proper Causal Path (Shpitser et al., 2010))). Let D,Y be sets of nodes. A causal path from a node in D to
a node in Y is called proper if it does not intersect D except at the end point.

Definition C.8 (Non-Causal Path). A non-causal path is a path that is not a causal path.

Definition C.9 (Parents, Ancestors, and Descendants). Parents of node X are the nodes in the graph from which an edge
points directly to X. An ancestor of X is any node which has a causal path to X. A descendant of X is any node which X
has a causal path to.17

Definition C.10 (d-Separation and Blocking (adapted from Pearl (2009))). Two sets of nodes, D,Y , in a graph G are said
to be d-separated by a third set, Z, if every path from any node D0 ∈ D to any node in Y0 ∈ Y is blocked. A path is blocked by
Z if either [1] some W is a collider on the path between D,Y and W ̸∈ Z and the descendants of W are not in Z or [2] W is
not a collider on the path but W ∈ Z.

Definition C.11 (I-map (adapted from Pearl (1988))). A causal graph G is said to be an I-map of a dependency model M if
every d-separation condition displayed in G corresponds to a valid conditional independence relationship in M . That is, for
every set of three nodes X, Y , and Z, if Z d-separates X from Y in G, then X is independent of Y given Z.

Shpitser et al. (2010) discuss a graphical representation called latent projections of causal graphs that contain both directed
and bidirected edges. Latent projections allow us to exclude latent variables in convenient ways. Specifically, they include a
node for every observed variable. However, two observable nodes A and B are connected by a directed edge only when any
and all intervening variables between A and B are latent. Also, A and B are connected by a bidirected edge when there is a
path from A to B that is not d-separated that starts with an edge pointing into A and ends with an edge pointing into B and
all the nodes on this path are latent other than the end points. As Shpitser et al. (2010) point out, latent projections retain all
d-separation statements from the original graph. We will also allow for such latent projections to be used to simplify graphs.
For our purposes, we do not allow sample selection to be treated as a latent variable and so it should always be included as a
separate node in the graph.

17We do not consider a node to be a descendant of itself.
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Definition C.12 (Twin-Network (adapted from Shpitser et al. (2010))). The twin network graph, N , (Balke and Pearl,
1994b,a) displays counterfactual independence among two possible worlds, the pre-intervention world which is represented
by the original graph G, and the post-intervention world, which is represented by the graph GD (a copy of G with the edges
pointing into D deleted and D replaced with D = d). The twin network is an I-map for the joint counterfactual distribution
p(v, vd), where V is the set of all observables, and Vd is the set of all observable variables after the intervention do(D = d)
was preformed. The observable nodes in these two graphs share the U variables, to signify a common history of these worlds
up to the point of divergence due to do(D = d). We add the additional refinement from Shpitser and Pearl (2007) where node
copies of all non-descendants of D in G and GD are merged in the twin network graph (since such nodes are the same random
variable in both the pre and post intervention worlds).

In our proofs, we will consider causal graphs and twin networks in which each bidirected edge between nodes A and B is
replaced with a node U∗

AB that is a common cause of the two nodes that were connected with the bidirected edge and points
to each of A and B. This replacement does not change d-separations from the original graph. See Figure 12 for a simple
example. Correa et al. (2018) make a similar alteration to the causal graphs they consider.

Figure 12: Twin network with no bidirected edges
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(c) Twin Network without bidirected edge

Definition C.13 (Colliders). A collider is a node in a causal graph into which two (or more) arrow heads point. For nodes
A,B,C, let C be a collider between A and B if it appears in the following sub-path of the causal graph: A→ C ← B.

Definition 2 (Internal Selection Graph, G+
S ). Let G be the DAG induced by a SCM.

1. Create GS by adding an appropriately connected binary selection node, S.
2. Draw a circle around S to clearly indicate that we must limit our analysis to S = 1.
3. Add to GS any node which is a parent of the treatment or a parent of a descendant of the treatment. Add to GS any

node which is a parent of the potential instrument or a parent of a descendant of the potential instrument. (US , the
background factors contributing to selection, can be excluded.)

4. Add a dashed undirected edge between all variables between which S is a collider or an ancestor of S is a collider. We
will call these dashed, undirected edges bridges.

Call the resulting graph an internal selection graph, G+
S . (These graphs are similar to those discussed in Daniel et al. (2012)

and Rohde and Hazlett (20XX).)

Definition C.14 (Extended Twin-Network). An extended twin network, N+
S , is a twin network, NS, containing an appropri-

ately connected pre-intervention binary selection node, S, and any corresponding post-intervention versions of it, where we
add bridges between all variables between which the pre-intervention S is a collider or an ancestor of pre-intervention S is a
collider. (Note that pre and post-intervention versions of S are assumed to have been added to both NS and N+

S ; we don’t use
a subscript to indicate this here.) It is easy to see that, like a twin network, an extended twin network displays counterfactual
independence among two possible worlds, the pre-intervention world which is represented by the original graph G+

S , and the
post-intervention world, which is represented by the graph (GS)D.

Extended twin networks are useful for the same reason that internal selection graphs are useful. There can be purely
statistical relationships between variables in the sample that are not captured in regular twin networks. As we saw in the
main text, bridges do not create colliders, since they are graphical representations of conditioning on sample selection when
it is a collider. So bridges do not alter the underlying fully directed graph. Since the addition of bridges does not create
any colliders, d-separation and blocking retain their definition in internal selection graphs and extended twin networks. See
Lemmas C.7 and C.8 that shows how d-separation (using the same definition) in internal selection graphs and extended
twin networks corresponds to d-separation in causal graphs and twin networks. As a result, we can then get independence
statements by reasoning about internal selection graphs and extended twin networks.
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Twin network graphs can become pretty complicated, even when the original causal graph only contains three nodes.
This is what makes graphical criteria like the one presented in this paper attractive for simplifying the analysis that leads
to ignorability statements. We are not advocating that researchers actually work with extended twin networks themselves.
We discuss extended twin networks in our proofs only. We advocate using internal selection graphs, which are usually much
simpler than twin networks and extended twin networks.

Definition C.15 (Paths and Generalized Non-Causal Paths). We revise Definition C.5 to state that a path is a sequence of
edges in G+

S or N+
S where each pair of adjacent edges in the sequence share a node, and each such shared node can occur only

once in the path, where we allow the edges to be bridges, as well as directed edges. A generalized non-causal path is a path that
is not a causal path.

Definition C.16 (Route (adapted from Shpitser et al. (2010))). A route from D to Y in a graph, G+
S or N+

S , is a sequence
of edges, where each pair of adjacent edges share a node, the unshared node of the first edge is D, and the unshared node of
the last edge is Y . (Shared nodes can occur more than once.) A route is d-separated if the same triples are blocked as in the
definition of d-separation above. The difference between a route and a path is that paths cannot contain duplicate nodes while
routes can. Note that we allow edges to be bridges.

Definition C.17 (Direct Route (adapted from Shpitser et al. (2010))). Let π be a route from D to Y in G+
S or N+

S . Label
each node occurrence in the route π by the number of times the node has already occurred earlier in π. A direct route π∗ is a
sub-sequence obtained from π inductively as follows:

• The first node in π∗ is the first node in π with the largest occurrence number.
• If the kth shared node in π∗ (and the mth node in π) is (Xi, r), and Xi ̸= Y , let the k+1th node in π∗ be (Xj , n), where
Xj is the m+ 1th node in π, and n is the largest occurrence number of Xj in π.

Definition 3 (Relevance Criterion). A set of nodes X and a possible instrument IV in G+
S satisfy the relevance criterion

relative to D (treatment), and Y (outcome) if there is at least one (causal or generalized non-causal) path between IV and D
that does not pass through S and is not blocked by X.

Definition 4 (Ignorability Criterion). A set of nodes X and a possible instrument IV in G+
S satisfy the ignorability criterion

relative to D (treatment), and Y (outcome) if
1. No element of {X,S} is a descendant of D and D is not in {X,S}.
2. X blocks every (causal and generalized non-causal) path between IV and Y except

(a) those that pass through S and
(b) those ending with a causal path from D to Y (e.g., paths between IV and Y that pass through D but where D or

one of its descendants touches a bridge or paths on which D is an ancestor of IV must be blocked by X).

C.2 Lemmas
Lemma C.1 (adapted from Shpitser et al. (2010); Pearl (1988)). Let G be a causal graph. Then any model M with a
distribution P (u, v) inducing G, if A is d-separated from B by C in G, then A is independent of B given C, which we write
A ⊥⊥ B|C in P (u, v).

Lemma C.2 (adapted from Shpitser et al. (2010)). For every route π in G+
S , the direct route π∗ is a path. Moreover, if π is

unblocked, then π∗ is unblocked.

Lemma C.3. If X and a possible instrument IV in G+
S satisfy the relevance criterion relative to D (treatment) and Y

(outcome), then X does not d-separate D and IV in G+
S .

Proof. D and IV are d-separated in G+
S if and only if there are no unblocked paths connecting them. Consider an internal

selection graph G+
S in which there are no paths between IV and D other than those that run through S or that are blocked

by X. In such a graph, any path between IV and D that runs through S on which S is not a collider is blocked as a result
of our having to condition on S and any path running through S on which S is a collider (or a descendant of a collider)
corresponds to a path that is identical with the exception that the edges forming the collider are replaced with a bridge
connecting the immediate parents of the collider. Any path like this that could connect D to IV must then be blocked by X
by our construction. And by construction, all other paths that might connect D to IV are also blocked by X. In such a
graph we can clearly see that IV and D are d-separated and we violate the relevance criterion. If we take the same graph and
add one or more paths between IV and D that do not run through S and are not blocked by X, then IV and D are not
d-separated and we also satisfy the relevance criterion.

Lemma C.4. If X does not d-separate D and IV in G+
S , then {X,S} does not d-separate D and IV in GS.
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Proof. If X does not d-separate D and IV in G+
S , then there is a path that connects D to IV on which S does not appear

that is not blocked by X. This is because any path that passes through S is either blocked, when S is not a collider, or, when
S is a collider or a descendant of a collider, corresponds to a path that is identical except that that the edges forming the
collider are replaced with a bridge connecting the immediate parents of the collider. Such paths cannot be blocked by X since
X does not d-separate D and IV in G+

S . Given a path that connects D to IV on which S does not appear and that is not
blocked by X, we can find the corresponding path in GS (which may include S as a collider or a descendant of a collider).
This path will then also not be blocked when we condition on {X,S} since S can only be either a collider or a descendant of a
collider on this path in GS and we know that X does not block it. Therefore, there is a path between D and IV in GS that is
not blocked by {X,S} and so {X,S} does not d-separate D and IV in GS .

Lemma C.5. If {X,S} does not d-separate D and IV in GS, then D ̸⊥⊥ IV |X,S = 1 for every model inducing GS.

Proof. This follows from Lemma C.1 and Definitions C.11 and C.12.

Lemma C.6. If X and a possible instrument IV in G+
S satisfy the ignorability criterion in G+

S relative to D (treatment) and
Y (outcome), then X d-separates IV and Yd in N+

S .

Proof. We closely follow the structure of the proof of Theorem 4 of Shpitser et al. (2010). We will show the contrapositive:
assuming that we are conditioning on X, an unblocked path from IV to Yd in N+

S implies that the ignorability criterion is
violated in G+

S .
Let π be an unblocked path from IV to Yd in N+

S . We assume without loss of generality that π intersects IV only at
the endpoint. Elements of X are only in the pre-intervention world, since we can only condition on observed variables never
counterfactual variables. So no descendant of D in the post-intervention world is conditioned on. Any unblocked path from IV
to Yd that "lands" in the post-intervention world must descend, along arrows pointing to Yd, to Yd. Therefore, an unblocked
path from IV to Yd in N+

S has three parts: π1 (an unblocked path in G+
S ), π3 (a causal path in (GS)D on which every

node is a descendant of D), and π2 (a single edge connecting π1 and π3 in N+
S ). N+

S contains copies of nodes in G+
S : one

copy corresponding to the variable in the pre-intervention world (G+
S ) and one copy corresponding to the variable in the

post-intervention world ((GS)D). So π may contain two such copies that refer to the same node in G+
S .

Sample selection means we condition on S = 1. This is a pre-intervention world or observed variable. No post-intervention
variable can be an ancestor of the pre-intervention version of S, otherwise we would be considering a post-intervention version
of S. So all ancestors of the pre-intervention S are also pre-intervention variables. Therefore, all bridges in N+

S appear in the
pre-intervention side of the graph, G+

S , since we’ve assumed that we’ve replaced bidirected edges with U∗’s with uni-directional
edges that point to the nodes that the bidirected edge had pointed to. Hence, any bridge on π will be in π1. Since we must
condition on the pre-intervention S, any path on which the pre-intervention S appears and is not a collider is blocked and so
cannot be π. Also, any path on which the pre-intervention S appears and is a collider (or for which S is a descendant of a
collider on the path) will correspond to a generalized non-causal path that is identical to the original path except that the
collider is not on the generalized non-causal path and the parents of the collider are connected by a bridge on the generalized
non-causal path. If the generalized non-causal path is not blocked then the original path will also not be blocked; if the
generalized non-causal path is blocked then so is the original path. Therefore, we can limit our analysis to such generalized
non-causal paths. So we consider π that do not contain S, though π may contain bridges in π1. Post-intervention versions of
S cannot appear on π3, since for this to occur S must be a descendant of D, otherwise it would not be in the post-intervention
world, but this is a violation of the criterion.

Let π′ be a route in G+
S created by the following two steps:

1. replace all occurrences of post-intervention variables in π by the nodes in G+
S these variables correspond to, coupled

with the appropriate occurrence numbers
2. replace all occurrences of a single variable twice in a row in the sequence from above by a single occurrence of that node

(with the occurrence numbers and all subsequent occurrence numbers appropriately decremented)
Let π∗ be the direct route of π′ in G+

S . The portions of π′ corresponding to π1 and π3 in π must be active. The remaining portion
of π′ is node triple, where the middle node had been pointed to by π2 in π. The second edge in this triple must be pointing
away from the middle node, since all edges in π3 point toward Yd. If this node triple exists in π (it may not if there are no edges
in π3), it must also be active in π′. For example, say that G+

S contains IV → D → Y and IV → D → X → Y and sample
selection does not connect to any other node. Then suppose that π is taken to be IV → D → X ← UX → Xd → Yd. Here π1

is IV → D → X ← UX , π2 is the edge between UX and Xd, and π3 is Xd → Yd. So π′ is IV → D → X ← UX → X → Y .
The node triple in π′ that does not correspond to π1 or π3 is UX → X → Y . This is blocked since we condition on X.
However, conditioning on X is a violation of the criterion since X is a descendant of D in G+

S . All blocked versions of the
node triple in π′ that does not correspond to π1 or π3 must also violate the criterion for similar reasons. Since the middle
node in this node triple is pointed to by π2, the middle node must be a post-intervention node and so it must lie on a causal
path from D to Y in G+

S , and conditioning on it violates the criterion. If the node triple is not active, it is like the previous
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example or was obtained from four consecutive nodes in π, with the two middle nodes being node copies connected by π2.
Since this involves a post-intervention copy (and hence a node on a causal path from D = d to Yd), this means that these
middle nodes cannot intersect or be ancestral to X or they would violate the criterion. (e.g., say we have a bidirected arrow
in the previous example rather than UX and so π is IV → D → X ↔ Xd → Yd and π′ is IV → D → X → Y , which is also
the node triple in π′ that does not correspond to π1 or π3 and is blocked since we condition on X; but again this is a violation
of the criterion.) Either the node triple is active or it isn’t. But, if it isn’t, then it could only have resulted from a violation of
the criterion. So π′ is an active route. By Lemma C.2, π∗ is an active path in G+

S .
If π∗ does not end with a causal path from D to Y , then we immediately violate the criterion since such paths must be

blocked by X. If π∗ does end with a causal path from D to Y , then we must consider how such a π∗ could have arisen from π.
Since no edges can point into the post-intervention copy of D, the copy of D that we see on π∗ must have resulted from the
pre-intervention copy of D being on π1. If π∗ ends with a causal path from D to Y , then we assume without loss of generality
that it is a proper causal path from D to Y . Since π∗ ends with a causal path from D to Y , the first edge in π between D
and Y must be a directed edge pointing away from an element in D. If π2 was bidirected in π, then the only way π could be
unblocked in N+

S would be for the second node in π between D and Y to be an ancestor of X (or a member of X itself). By
construction of π∗, the second node in π is also the second node in π∗. This is a violation of the criterion. But we’ve also
replaced all the bidirected edges in the twin network, so this case should not appear. If π2 was directed in π, then the nodes it
connects in G+

S are a parent-child pair, with the parent copy (node P ) in the G+
S part of N+

S and the child copy (node C) in
the (GS)D part of N+

S . So P cannot be a descendant of D, otherwise it would be in the (GS)D part of N+
S . If π1 and π3 do

not share nodes (meaning π1 has a pre-intervention copy and π3 has a post-intervention copy of the same node), then π∗

cannot be a proper causal path from D to Y in G+
S . Otherwise, P would have to be a descendant of D, a contradiction. If

π1 and π3 share nodes, then the only way to reach P from D is via a collider unblocked by X. This would mean that the
second node in π between D and Y (and the second node in π∗ between D and Y ) is an ancestor of X, which violates the
criterion.

Lemma C.7. If X d-separates IV and Yd in N+
S , then {X,S} d-separates IV and Yd in NS.

Proof. We very closely follow the proof of Lemma 3 in the Web Appendix for Daniel et al. (2012), with changes for sample
selection. Suppose that this statement is false. Then there must be a twin network, NS , and a X for which there is a path
in NS from IV to Yd that is not blocked by {X,S} but all paths from IV to Yd in N+

S are blocked by X. Let p be such a
path in NS . p is also in N+

S since N+
S is NS but with edges added. No edges are removed in extending NS to N+

S . If p is not
blocked after conditioning on {X,S} in NS but is blocked after conditioning on X in N+

S , then either
• A variable in p is a member of X (and hence blocks p in N+

S ) but is not a member of {X,S} (and hence does not block
p in NS). But this is a contradiction, since X ⊂ {X,S}.

• p contains a collider, C, such that either C is in {X,S} or has descendants in {X,S} (so that p is not blocked in NS),
but C is not in X and does not have descendants in X (so that p is blocked in N+

S ). This means that p must contain a
collider C with either C = S or C is an ancestor of S. In either case, p corresponds to a generalized non-causal path, p′,
in N+

S , which is identical to p except that C is not on p′ and the parents of C on p are connected with a bridge on p′. If
p is not blocked in NS then p′ must not be blocked in N+

S , since none of the variables (except for C) on p is in {X,S}.
Thus, none of the variables on p′ is in X. This is a contradiction.

Lemma C.8. If Z d-separates D and Yd,S=1 in N+
S , then {Z, S} d-separates D and Yd,S=1 in NS.

Proof. This proof is similar to that for Lemma C.7.

Lemma C.9. If {X,S} d-separates IV and Yd in NS, then Yd ⊥⊥ IV |X,S = 1 for every model inducing Gs.

Proof. This follows from Lemma C.1 and Definitions C.11 and C.12.

C.3 Theorems
Theorem 1. If a set of nodes X and a possible instrument IV in internal selection graph G+

S satisfy the relevance criterion
relative to D (treatment), and Y (outcome), then D ̸⊥⊥ IV |X,S = 1.

Proof. Lemmas C.3, C.4, and C.5 prove the result.

Theorem 2. If a set of nodes X and a possible instrument IV in internal selection graph G+
S satisfy the ignorability criterion

relative to D (treatment), and Y (outcome), then Yd ⊥⊥ IV |X,S = 1.

Proof. Lemmas C.6, C.7, and C.9 prove the result.
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[DRAFT]

C.4 Violations of exclusion restriction and the definition of instruments
In this section we shed some light on the usefulness of the specific definition of instruments that we use. Suppose that we have
the causal graph in Figure 13(a). If we consider the definition of an instrument in which the exclusion restriction is seperated
from ignorability (i.e., Yd,iv = Yd,iv′ = Yd and Yiv,d ⊥⊥ IV ), then we have a violation of exclusion but not ignorability in this
graph. (Hernán and Robins, 2006, 2020) If we consider the definition of an instrument in which these are combined in to a
single ignorability condition (Yd ⊥⊥ IV or Yd ⊥⊥ IV |X), then we have a violation of ignorability.

We might consider conditioning on M to fix the problems. When we condition on M , we see that exclusion is not achieved
(Yd,iv ̸= Yd) and further we have Yiv,d ̸⊥⊥ IV |M . However, when we condition on M , we get Yd ⊥⊥ IV |M . These can be seen
in Figure 13(b,c). We’re not actually interested in Yd,iv in its own right. There is nothing that requires that conditional
ignorability statements for Yd follow those for Yd,iv. This is just such an example where they don’t follow. Indeed, conditioning
on M can actually fix problems for ignorability with Yd but creates problems for ignorability with Yd,iv.

So we see that while it might be intuitive to consider exclusion separately from ignorability, writing the instrument
definition in this way actually imposes some unnecessary limitations on the type of conditional instruments that might work.
Below, our graphical criterion allows the user to think intuitively in terms of separately ruling out causal paths and non-causal
paths between IV and Y , but does not impose unnecessary restrictions as a result of writing the instrument definition in a
certain way. This is a key distinction since much of the literature on instruments discusses these conditions seperately.

As we show above, we can say the following for the unconditional statements: Yd = Yiv,d, Yd,iv ⊥⊥ IV ⇐⇒ Yd ⊥⊥ IV , but
this does not hold for the conditional versions of these. In particular, Yd ⊥⊥ IV |M ≠⇒ Yd = Yiv,d, Yd,iv ⊥⊥ IV |M . Though
Yd = Yiv,d, Yd,iv ⊥⊥ IV |M =⇒ Yd ⊥⊥ IV |M .

Figure 13: A Violation of the Exclusion Restriction
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