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Recommended resources

Useful resources

1. Understanding the Frisch-Waugh-Lovell Theorem - Courthoud (2022) [link]

2. Seasonal Adjustment of Economic Time Series and Multiple Regression Analysis -
Lovell (1963) [link]

3. A Simple Proof of the FWL Theorem - Lovell (2008) [link]

4. Making sense of sensitivity: extending omitted variable bias - Cinelli and Hazlett
(2020) [link]
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https://towardsdatascience.com/the-fwl-theorem-or-how-to-make-all-regressions-intuitive-59f801eb3299
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10480682
https://www.tandfonline.com/doi/abs/10.3200/JECE.39.1.88-91?src=recsys
https://rss.onlinelibrary.wiley.com/doi/10.1111/rssb.12348


Running example
Suppose we run a chain of 10 grocery stores.
We decide to try to increase sales by providing discounts using coupons.
Coupons are distributed and we observe the share of shoppers that use coupons at each
of our stores on each day of the week for a single week.

We want to know whether shoppers using the coupons changed sales.
We suspect that higher income shoppers tend to use the the coupons less but spend more.
So we also record average incomes in the area for each store.

n = 70

store = sort(rep(1:10, times=7)) # store ID

day = rep(1:7, times=10) # day ID

income = 5*store + rnorm(n,30,10) # income in 1,000s

coupons = -0.005*income + rnorm(n,0.7,0.1) # pct shoppers using coupon

sales = 200*coupons + 10*income + 10*day + 10*rnorm(n,10,2) # sales
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Running example

Store Income

Coupons

Day

Sales

n = 70

store = sort(rep(1:10, times=7)) # store ID

day = rep(1:7, times=10) # day ID

income = 5*store + rnorm(n,30,10) # income in 1,000s

coupons = -0.005*income + rnorm(n,0.7,0.1) # pct shoppers using coupon

sales = 200*coupons + 10*income + 10*day + 10*rnorm(n,10,2) # sales
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Running example
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Sales and Coupon Usage
Seems like coupons hurt sales. But we’re not adjusting for income.
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Sales and Coupon Usage

Lets try including income and day in our regression.

# regress sales on coupons

m1 = lm(sales ∼ coupons)
# regress sales on coupons and income

m2 = lm(sales ∼ coupons + income)
# regress sales on coupons, income, and day

m3 = lm(sales ∼ coupons + income + day)
# create nice latex table

stargazer(m1, m2, m3, align=TRUE)
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Sales and Coupon Usage

Dependent variable:

sales

coupons −547.094∗∗∗ 177.014∗∗∗ 208.353∗∗∗

(110.139) (30.828) (23.860)

income 9.731∗∗∗ 9.814∗∗∗

(0.262) (0.200)

day 8.711∗∗∗

(1.234)

Observations 70 70 70
R2 0.266 0.966 0.981

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

8 / 26



Frisch-Waugh-Lovell (FWL) Theorem
Suppose we have a model that takes the form

Yi = β1X1,i + β2X2,i + ϵi

Then the following estimators of β1 are equivalent:
• OLS estimator from regressing Y on X1 and X2

• m0 = lm(Y ∼ X1 + X2)

• OLS estimator from regressing Y on X̃1, where X̃1 is the residual from the regression
of X1 on X2

• m1 = lm(X1 ∼ X2) and get X̃1 = residuals(m1)
• m2 = lm(Y ∼ X̃1)

• OLS estimator from regressing Ỹ on X̃1, where Ỹ is the residual from the regression
of Y on X2 and X̃1 is the residual from the regression of X1 on X2

• m3 = lm(Y ∼ X2) and get Ỹ = residuals(m3)
• m1 = lm(X1 ∼ X2) and get X̃1 = residuals(m1)
• m4 = lm(Ỹ ∼ X̃1)
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Sales and Coupon Usage

Let’s test this out with our example.

m0 = lm(sales ∼ coupons + income)
m1 = lm(coupons ∼ income)
m3 = lm(sales ∼ income)
coupons tilde = residuals(m1)

sales tilde = residuals(m3)

m2 = lm(sales ∼ coupons tilde)
m4 = lm(sales tilde ∼ coupons tilde)
stargazer(m0, m2, m4, align=TRUE)
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Sales and Coupon Usage

Dependent variable:

sales sales sales tilde

coupons 177.014∗∗∗

(30.828)

coupons tilde 177.014 177.014∗∗∗

(164.592) (30.600)

income 9.731∗∗∗

(0.262)

Observations 70 70 70
R2 0.966 0.017 0.330

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Partialling out

So what is really happening when we regress sales on income and coupons on income
before running the regression of the residuals on the residuals?

The process is referred to as “partialling out” or “residualizing” or “orthogonalization”.
When we residualize, we remove the linear relationship between sales and income (and
between coupons and income) and just keep the residuals. This means that the variation
in sales (or coupons) explained by income is removed; leaving only some remaining (or
residual) variation; the variation in the residuals.

Partialling-out removes the portion of sales that is driven by income and the portion of
coupons that is driven by income. Since income is a confounder of the effect of coupons
on sales (and everything is linear), doing this leaves us with the causal effect of coupons
on sales. This is exactly what regression does when we regress sales on coupons and
income (i.e., the coefficient tells you how much the dependent variable increases when the
independent variable increases by one, holding other independent variables constant).
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Why are “middle” standard errors larger?

We’re using income to explain coupons but not to explain sales.

So this is sort of like adjusting for a covariate that only explains the treatment, in that it
eats up the variation in coupons (the treatment) without eating up any of the variation in
sales (the outcome).

It will break the connection between coupons and income giving us an unbiased estimate,
but it will typically hurt precision.

So the better approach is to residualize both the treatment and the outcome.
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Partialling out
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Partialling out
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Partialling out
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Partialling out
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Causal relationship
So this gives us the causal relationship.
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Biased relationship
Recall this is the biased relationship, where we don’t partial out the effect of income.
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Proof sketch of FWL theorem
Consider the regression including both coupons and income:

Sales = α̂1+ β̂Coupons + γ̂Income + ϵ̂ (1)

Also consider the partialling out regressions, where ϵ̂Sales and ϵ̂Coupons are the residualized
Sales and Coupons:

Sales = â11+ â2Income + ϵ̂Sales

Coupons = b̂11+ b̂2Income + ϵ̂Coupons
(2)

We want to show that regressing ϵ̂Sales on ϵ̂Coupons recovers β̂.
Substituting (2) into (1), we get

[â11+ â2Income + ϵ̂Sales] = α̂1+ β̂
[
b̂11+ b̂2Income + ϵ̂Coupons

]
+ γ̂Income + ϵ̂

=⇒ ϵ̂Sales = β̂ϵ̂Coupons +
(
α̂+ β̂b̂1 − â1

)
1+

(
γ̂ + β̂b̂2 − â2

)
Income + ϵ̂

(3)
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Proof sketch of FWL theorem

ϵ̂Sales = β̂ϵ̂Coupons +
(
α̂+ β̂b̂1 − â1

)
1+

(
γ̂ + β̂b̂2 − â2

)
Income + ϵ̂ (3)

• Recall that residuals from a least squares regression are uncorrelated with the
explanatory variables. So ϵ̂Sales and ϵ̂Coupons are uncorrelated with Income and 1.

• Also recall that the coefficients on explanatory variables that are uncorrelated with
both the dependant and explanatory variables are zero. So the coefficients on Income
and 1 in (3) must be zero.

• Therefore, Income and 1 drop out of (3) and we get the residual on residual
regression in (4), where we see that the coefficient on ϵ̂Coupons is the same as on

Coupons in (1), namely β̂.

ϵ̂Sales = β̂ϵ̂Coupons + ϵ̂ (4)
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Residuals uncorrelated with explanatory variables

Let the residuals from an OLS regression be ϵ̂i = Yi − Ŷi = Yi − Xi β̂.
The covariance between the ϵ̂i s and Xi s is (sample covariance formula)

1

n

n∑
i=1

ϵ̂iXi −

[
1

n

n∑
i=1

ϵ̂i

][
1

n

n∑
i=1

Xi

]

If the model includes an intercept then
∑n

i=1 ϵ̂i = 0 and covariance becomes 1
n

∑n
i=1 ϵ̂iXi .

But the way we estimate OLS is by solving the normal equations
0 = X⊤(Y − Xβ̂) = X⊤(Y − Ŷ) = X⊤ϵ̂ =

∑n
i=1 ϵ̂iXi .

So the covariance 1
n

∑n
i=1 ϵ̂iXi = 0 and so correlation is also zero.
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Omitted variable bias

We can cast the confounding problem as omitted variable bias.
We initially ran the regression: Sales = α̂s + β̂sCoupons + ϵ̂s .
But we should have run the regression: Sales = α̂ℓ + β̂ℓCoupons + γ̂ℓIncome + ϵ̂ℓ.
The income variable was omitted from the regression, which caused a biased estimate.

We can now try to understand the bias β̂s − β̂ℓ.

β̂s =
Ĉov(Coupons, Sales)

V̂ar(Coupons)
=

Ĉov(Coupons, α̂ℓ + β̂ℓCoupons + γ̂ℓIncome + ϵ̂ℓ)

V̂ar(Coupons)

=
β̂ℓĈov(Coupons,Coupons) + γ̂ℓĈov(Coupons, Income)

V̂ar(Coupons)
= β̂ℓ + γ̂ℓ

Ĉov(Coupons, Income)

V̂ar(Coupons)

= β̂ℓ + γ̂ℓδ̂, where δ̂ is the reg. coef. from lm(Income ∼ Coupons)
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Omitted variable bias

So we see that the bias from omitting the income variable from our regression can be
written as

β̂s − β̂ℓ = γ̂ℓδ̂

which captures the relationship between sales and income (γ̂ℓ) and between coupons and
income (δ̂).
Both multiple regression (i.e., regressing sales on coupons and income) and partialling out
are equivalent ways to remove the effect of income on coupons and of income on sales to
estimate the effect of coupons on sales.
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Omitted variable bias

Dependent variable:

sales sales income

coupons −547.094∗∗∗ 177.014∗∗∗ −74.414∗∗∗

(110.139) (30.828) (11.053)

income 9.731∗∗∗

(0.262)

Observations 70 70 70
R2 0.266 0.966 0.400

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

β̂ℓ = 177.014 and β̂s − γ̂ℓδ̂ = 547.094− (9.731)(74.414) = 177.014

25 / 26



Any remaining time

questions / break

26 / 26


