
CS 263 Final Project
Cooking Up Recipes: A Recipe Recommender Based on Text Similarity

Ashley Chiu
UID: 003940452

ashleychiu@ucla.edu

Ritvik Kharkar
UID: 904314219

ritvikmathematics@gmail.com

Adam Rohde
UID: 404945871

adamrohde@ucla.edu

Abstract
In this project we use a range natural language
processing techniques (bag of words, Doc2vec,
recurrent neural networks-based LSTM mod-
els, and pre-trained language model BERT)
to learn vector space embeddings for cook-
ing recipes. We use these embeddings to de-
termine similarity between recipes and recom-
mend such similar recipes, based on user input
to a web demo app. We assess the quality of
recommendations and embeddings by human
review, PCA, and cluster analysis, finding that
our models produced mixed results. Generally,
simpler models seem to perform best.

1 Introduction and Motivation

The shelter-in-place orders implemented across the
world in response to the COVID-19 pandemic have
fueled a renewed interest and increased need to
cook at home. This behavioral change motivates
our goal of creating a tool to make cooking more ac-
cessible and/or help expand one’s culinary horizons
in the form of a recommender system for recipes.

Most simply, cooking recipes are structured doc-
uments consisting of three main sections: a title, a
list of ingredients, and a sequence of instructions,
where instructions contain unstructured text.

Based on reviewed related works, we employ
several different NLP techniques on this data, rang-
ing from a simple bag of words model to a state-
of-the-art BERT model to learn features and word
embeddings from cooking recipes. From these
learned embeddings, we build a recommender sys-
tem based on the cosine similarity between recipes.

We judge the quality of recommendations and
vector space embeddings with human review, PCA,
and cluster analysis. Given computational con-
straints and the nature of the data, this review shows
mixed results across the models. Generally, we see
that simpler models tend to produce the most con-
sistent recommendations.

The remainder of this report contains a brief
description of each of the chosen models (Bag of
Words, Doc2Vec, LSTM, BERT; see Section 3.2)
applied to the the Recipe1M+ dataset from MIT
CSAIL (see Section 3.1), as well as how we define
and evaluate recipe similarity (see Section 4).

Prior to our description of methods, we briefly
review several recent related works that inspire
and support our recommender system in Section 2.
Following our description of methods, we compare
the results of the various models we attempted in
Section 4 and share details of our demo in Section
5. Lastly, we offer concluding remarks and discuss
potential extensions of our work in Section 6.

About the Collaborators Our team is com-
prised of 3 first-year MS students from the Statis-
tics Department. Our approach herein reflects our
interests in model selection and understanding rela-
tionships in data (i.e. between recipes). We would
like to note that this is a first course in CS for the
team and that we have no prior experience with AI.

2 Related Work

NLP techniques have been used to analyze cook-
ing recipes by the academic research community,
newspapers12, and even popular commercial ap-
plications such as Yummly3. However, related
works show that the techniques utilized to analyze
such text span an incredibly broad range due to the
unique instructional nature of cooking recipes.

Most simply, recipes have been analyzed using
bag-of-words models, which can fairly accurately
detect similarities based on ingredient lists. While
this may be sufficient for elementary comparisons
between recipes, it can fail to capture situations in
which the quantities or actions to such ingredients

1LA Times
2NY Times
3Yummly.com

https://datadesk.latimes.com/posts/2013/12/natural-language-processing-in-the-kitchen/
https://open.blogs.nytimes.com/2015/04/09/extracting-structured-data-from-recipes-using-conditional-random-fields/
www.yummly.com


dramatically alter the end result. For example, sev-
eral recipes may contain ingredients like flour, milk,
sugar, and eggs, but differences in cooking tech-
nique can produce incredibly varied food items.

To capture this underlying complexity, Jermsura-
wong and Habash (2015) developed Simplified In-
gredient Merging Map in Recipe (SIMMR), an
ingredient-instruction dependency tree representa-
tion of recipe structure. In this dependency tree, the
leaf nodes are each ingredient used in the recipe,
which reveals insight into the underlying structure
of the recipe, as well as relationships between sets
of ingredients, instructions, and the order in which
actions can be be taken to achieve the end result.

Others like Teng et al. (2012) construct an in-
gredient complement network, which analyzes sim-
ilarities in recipes by capturing the relationships
between ingredients. Teng et al. use these net-
works to examine and visualize which ingredients
tend to co-occur frequently. Such networks reveal
clusters of ingredients, which can be utilized to rec-
ommend ingredient substitutes or fed as features to
a downstream recipe ratings prediction task.

Another common approach is to focus heavily
on word-embeddings, as seen in the works of Marin
et al. (2019) and Salvador et al. (2017). In these
works, embeddings are learned using bi-directional
LSTM, which enable a more in-depth understand-
ing of each recipe based on both ingredients and
preparation. These embeddings are incredibly use-
ful for comparing recipes, as we can directly evalu-
ate their quality using cosine similarity and recipe
arithmetic. This work goes one step further by
learning joint embedding of recipes and images.

Many of these methods have also been combined,
as by Chang et al. (2018), where we see embed-
dings and clustering being used in an interactive
tool to help analyze and identify usage patterns of
particular ingredients and cooking methods.

Based on these works, we develop the approach
of examining different models ranging from the
simplest Bag of Words to more complex language
models (e.g., BERT). Likewise, we use clustering
to help evaluate and visualize the performance of
our models on the ultimate recommendation task.

3 Methodology

3.1 The Data

Our feature vectors and word embeddings are
trained on a subset of the Recipe 1M+ dataset, a
large-scale, structured corpus from MIT CSAIL

that includes over one million cooking recipes
sourced from popular cooking websites (Marin
et al., 2019). Further, due to the large volume of
recipes and limited computing power, we isolate
our training to only “baking” recipes (title, ingredi-
ent list, or instructions must contain the keyword
“bake”) – approximately 130,000 observations.

Following traditional recipe structure, each
recipe in the data consists of a title, ingredients sec-
tion, and instructions section. The ingredient sec-
tion contains an ingredient list, along with required
quantities. The instructions contain an ordered se-
quence of actions to perform on the ingredients.

Data Challenges We originally planned to focus
our models on the cooking instructions, as these
often capture both the ingredients and related ac-
tions. However, our initial attempts to train models
on this data hit several computational bottlenecks
caused by the length of the instruction strings and
the long tail of the resulting vocabulary. Marin et al.
(2019) acknowledge the issue of vanishing gradient
as a challenge with this data. It is also important
to note that often instructions are very ambiguous
and require high-level semantic understanding (e.g.,
“mix wet and dry ingredients”). To address these
challenges, we shifted instead to train our models
on the recipe titles concatenated together with the
recipe ingredients, which are orders of magnitudes
shorter than recipe instructions (see Figure 1). Ad-
ditionally, we limit our data to recipes that contain
at most 75 words. Based on Figure 1 this has mini-
mal impact to number of training observations, but
greatly improves computational efficiency.

From our personal experience, we believe there
is still some inherent meaning in the order of ingre-
dients, as ingredients are often listed in the same
order that they are used in the instructions, giving
ingredient lists the flavor of simplified instructions.
Similarly, recipe titles capture additional specificity
(e.g. name of the dish, flavors, or defining actions).

Lastly, our data is largely unlabeled. We identify
that a small portion of baking recipes are accompa-
nied by nutritional categorizations (5,005 recipes),
which can treat as “pseudo-labels” that can offer
a basis for evaluating the strength and legitimacy
of our learned clusters (see Section 4.2). As such,
the below analysis and model evaluation is limited
to this subset. This also allowed us to generate
the required similarity matrices with the memory
resources we had available for our web app.



Figure 1: Baking Subset Statistics

3.2 Models

Bag of Words As a baseline, we implemented
the Bag of Words model which represents each
sample (a recipe title together with its ingredient
list) as a vector of 0s and 1s indicating whether
a word appears in the sample or not. Our related
works (Jermsurawong and Habash, 2015) and other
reviewed literature on content-based recommender
systems cite this as a primitive, but popular and
effective model for recipe analysis.

Doc2vec To overcome the fact that Bag of Words
does not capture word ordering and distance be-
tween words in a sample, we choose Doc2vec (Le
and Mikolov, 2014), an extension of Word2vec, as
our next model. Whereas Word2vec captures word
order and distance, Doc2vec goes further by adding
a document vector, allowing us to indicate that each
sample is an independent, self-contained recipe.
Specifically, Doc2vec predicts the next word in
many contexts from each recipe using both word
and recipe vectors in multiclass classification.

LSTM In the spirit of Marin et al. (2019), we
aimed to build a bidirectional long short-term mem-
ory (LSTM) recurrent neural network to learn
recipe instruction embeddings. Without labeled
data, we formulate our model as an autoencoder.
LSTMs are often good at avoiding the vanishing
gradient problem over longer sequences, as well
as capturing semantic information that is lost in
models like bag of words. However, as mentioned,
the long tail of our vocabulary and computational
concerns led us to abandon instructions in favor of
recipe titles and ingredient lists. While this slightly
weakens the case for using LSTM, still, based on
the discussion in Section 3.1, we felt that the LSTM
might be able to learn meaningful embeddings and
continued to train it to test this.

BERT In the interest of evaluating the strength
of recommendations produced by a state-of-the-
art model, we augmented the pre-trained Bidirec-
tional Encoder Representations from Transform-
ers (BERT) model first introduced in Devlin et al.
(2019). BERT offers an out-of-the-box language
model containing pre-trained deep bidirectional
representations from unlabeled text. The main add
provided is that both directions are considered si-
multaneously at each layer, a feature that has been
shown to improve performance on a wide range of
NLP tasks. In order to observe how the out-of-the-
box BERT model performs on our recommendation
task, we fine-tune the model using our recipe data.
Although our data may not have an explicit direc-
tional component, the considerations in Section 3.1
justify our experimentation with BERT.

4 Model Evaluation and Results

Evaluation Challenges As our goal is to de-
velop a recommender system, an initial challenge
was deciding how to evaluate the strength of rec-
ommendations across models. Note that we make
recommendations by calculating the cosine simi-
larity between recipe learned embeddings. Unlike
other trained recommender systems, our data does
not contain a ground-truth, pre-existing ratings, or
any labels to help supervise the learning process.4

Based on these limitations, we settle on a two-step
approach to model evaluation.

First, we use the demo outlined in Section 5
to subjectively decide how one model performs
relative to the others across varied inputs. Given
a recipe input, humans can easily judge whether
recommendations appear similar and reasonable.
While this method of evaluation is subjective, we

4As discussed, evaluated data contain “pseudo-labels” in
the form of nutritional categorization. This information is not
used in training. See 3.1 and 4.2



believe it is meaningful, as it best mimics user
perception of the quality of recommendations.

Second, we use unsupervised K-Means cluster-
ing, a widely used method of document classifica-
tion (Singh et al. (2011), Allahyari et al. (2017)), on
the first two principal components of recipe embed-
dings learned by each model to more objectively
evaluate whether each model forms “natural” clus-
ters. Principal Component Analysis (PCA) helps
to reduce dimensionality of the word vector spaces,
as well as aids as a tool for visualization. We also
use the available nutritional information to evaluate
whether any clusters form based on nutritional (i.e.,
sugar, fat, salt, saturates) content.

4.1 Recommendation Quality

For several recipes, we subjectively evaluated the
recommendations produced by all four models.
Example output for a recipe titled Hazelnut Buck-
wheat Shortbread Dipped in Dark Chocolate is
shown below. This recipe is indicative because of
the many component ingredients in its title. The
recipe contains the following ingredients: coconut
oil, date sugar, sea salt, ground cardamom,
ground cloves, vanilla extract, buckwheat
flour, flour, water, and dark chocolate. The top
recommendations are as follows:

BoW: Basic Shortbread, Miniature Chocolate
Hazelnut Cakes, Chocolate Chip Shortbread
D2V: Coconut Shortbread, Hot Fudge Ooze Cake,
Devils Food Cupcakes with Vanilla Buttercream
Glaze
LSTM: Best Ever Eggless Banana Oatmeal
Muffins, The Best Chocolate Chunk Cookies Ever!,
Blueberry Mango Coconut Crisp
BERT: Rye Bread for the Bread Machine, Boston
Brown Bread, Strawberry Snack Cake

Subjectively, we see that Bag of Words gives
the most direct recommendations, echoing many
of the same words from the recipe title. Doc2Vec
seems to pick up on the coconut oil and vanilla
extract included in the ingredients but not imme-
diately in the title. Lastly, LSTM and BERT seem
to offer recommendations which are not “obvious”
given the title and ingredients of the input recipe.
Their recommendations offer a wider range / diver-
sity of options, while still remaining in the realm
of “breads” that are also mostly within the same
“sweet” flavor profile. This example is representa-

tive of the results observed for other recipe inputs.

4.2 K-Means Clustering
We begin our clustering analysis by performing
principal component analysis on learned recipe em-
beddings. This allows us to 1) determine how much
variability exists in each set of embeddings, poten-
tially reduce dimensionality, and 2) plot each recipe
in 2D via the first two principal components.

Figure 2 shows that as model sophistication in-
creases, more of the variation in the embeddings is
explained by just the first principal component.

Figure 2: Scree Plot of Model Embeddings

Next we cluster using K-Means (k = 2), observ-
ing in Figure 3, that only Bag of Words displays
two “natural” clusters. The more complex models
do not appear to form meaningful clusters: the dis-
tinction straight down the middle is simply the al-
gorithm minimizing distance between the required
k = 2 cluster centers and the actual data points.

Figure 3: K-Means Clustering on Model Embeddings

Despite these results, we can still gain insight
into model performance by subjectively reviewing



the most common unique words occurrences across
recipes in each cluster. In the case of LSTM/BERT,
this allows us to evaluate whether each direction of
the first principal component tends to capture some
semantically meaningful, human interpretable con-
nection between recipes. We see that this results in
something like sweet vs savory in BoW. However,
the clusters for the other models are more difficult
to interpret. Refer to Appendix D for word clusters.

Figure 4: Sugar Level Clustering on Embeddings

Nutritional Clustering Our final method of eval-
uation exploits the nutritional information available
for the 5,005 recipes detailed in Section 3.1. The
nutritional information is already categorized into
three groups for each of sugar, fat, salt, and satu-
rates content (i.e. “high”, “medium”, “low”). Fig-
ure 4 shows the first two principal components with
data points colored according to sugar categories.
We see that all the models have some weak clus-
tering. With the largest distinction between sugar
categories appearing for BoW. Figures for other
nutritional clusters appear in Appendix D.

In sum, we assess recommendations and em-
beddings with human review, PCA, and cluster
analysis. Given computational constraints and data
challenges, this review shows mixed results across
the models. Generally, we see that simpler models
produce the most consistent and direct results.

5 Demo

Our demo is an interactive website that allows
users to see the recommendations provided by each
of our models firsthand. The landing page of-
fers a selection of random recipes from our sub-
set of the Recipe1M+ dataset, which users are
prompted to select according to their tastes. Our

site processes this input and issues back a list
of other recipes from our dataset that are cal-
culated to be the most similar to the selected
recipe(s). For evaluation purposes, recommen-
dations are provided from each of the four im-
plemented models. Our final demo is housed at
http://nlp-recipe-project.herokuapp.com.

6 Conclusion and Future Work

Our simple/survey-like demo is an elementary
step towards more sophisticated NLP-based rec-
ommender systems for cooking recipes. And, more
importantly, provides insight on which aspects of
a cooking recipe are most important for gauging
similarity between recipes.

As we have seen in Section 2 (Related Works),
there are many other NLP techniques, which could
be integrated into our models. Once such extension
that follows directly is utilizing clustering beyond
a means of model evaluation. Instead, we can ac-
tively learn more sophisticated clusters of recipes to
help identify types of cuisines, taste profile, and/or
difficulty level by incorporating additional data into
the training process or obtain labeled data.

Additionally, our system is currently self-
contained to a specific subset of the Recipe1M+
dataset. Users calibrate the recommendation by
selecting preferred food items that come from the
dataset itself. In the future, we can augment our
system to allow independent user input, including
links to their own recipes, available ingredients, or
specific flavors. By tracking clicks on recommen-
dations, we can also learn which suggested recipes
users like and which they dislike, which could then
be fed into a reinforcement learning system.

Also, as outlined in Section 3.1, we had to make
several compromises because of computational bot-
tlenecks. By using stronger computing resources,
allowing them to run for longer periods of time, and
researching optimized data storage and manipula-
tion techniques, we can provide even more context
to our recommender system.

To conclude, the ability to analyze cooking
recipes is not only relevant for a wide range of peo-
ple, but may also pave the way for studying other
technical manual/instruction-type data. Translating
text such as cooking recipes into semantic repre-
sentations can be a means to facilitating more so-
phisticated natural language processing tasks and
inference such as question answering.

http://nlp-recipe-project.herokuapp.com


References
Mehdi Allahyari, Seyed Amin Pouriyeh, Mehdi Assefi,

Saied Safaei, Elizabeth D. Trippe, Juan B. Gutierrez,
and Krys Kochut. 2017. A brief survey of text min-
ing: Classification, clustering and extraction tech-
niques. CoRR, abs/1707.02919.

Minsuk Chang, Léonore V. Guillain, Hyeungshik Jung,
Vivian M. Hare, Juho Kim, and Maneesh Agrawala.
2018. Recipescape: An interactive tool for analyz-
ing cooking instructions at scale. In Proceedings
of the 2018 CHI Conference on Human Factors in
Computing Systems, page 1–12.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jermsak Jermsurawong and Nizar Habash. 2015. Pre-
dicting the structure of cooking recipes. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 781–786.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. CoRR,
abs/1405.4053.

Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas
Hynes, Amaia Salvador, Yusuf Aytar, Ingmar Weber,
and Antonio Torralba. 2019. Recipe1m+: A dataset
for learning cross-modal embeddings for cooking
recipes and food images. IEEE Trans. Pattern Anal.
Mach. Intell.

Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier
Marin, Ferda Ofli, Ingmar Weber, and Antonio Tor-
ralba. 2017. Learning cross-modal embeddings for
cooking recipes and food images. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition.

V. K. Singh, N. Tiwari, and S. Garg. 2011. Docu-
ment clustering using k-means, heuristic k-means
and fuzzy c-means. In 2011 International Confer-
ence on Computational Intelligence and Communi-
cation Networks, pages 297–301.

Chun-Yuen Teng, Yu-Ru Lin, and Lada A. Adamic.
2012. Recipe recommendation using ingredient net-
works. In Proceedings of the 4th Annual ACM Web
Science Conference, pages 298–307.

A Division of Labor

We certify that all collaborators contributed to this
project equally. For transparency, certain tasks
were led as follows. We evaluated the recipe rec-
ommendation quality together.

Ashley Chiu Related Works, Bag of Words,
Cluster Analysis, written materials initial drafts

Ritvik Kharkar BERT, Demo/App construction

Adam Rohde Data cleaning and processing,
Doc2Vec, LSTM

B Code and Data

All code and data is available on GitHub at
https://github.com/ritvikmath/nlp-recipe-

project.

Full Recipe 1M+ dataset is available from MIT
CSAIL at http://im2recipe.csail.mit.edu

upon registration.

Data included on Google Drive consists of our pre-
processed baking subset and final app/analyzed
data.

http://arxiv.org/abs/1707.02919
http://arxiv.org/abs/1707.02919
http://arxiv.org/abs/1707.02919
https://doi.org/10.1145/3173574.3174025
https://doi.org/10.1145/3173574.3174025
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/D15-1090.pdf
https://www.aclweb.org/anthology/D15-1090.pdf
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
http://pic2recipe.csail.mit.edu/tpami19.pdf
http://pic2recipe.csail.mit.edu/tpami19.pdf
http://pic2recipe.csail.mit.edu/tpami19.pdf
http://pic2recipe.csail.mit.edu/im2recipe.pdf
http://pic2recipe.csail.mit.edu/im2recipe.pdf
https://doi.org/10.1145/2380718.2380757
https://doi.org/10.1145/2380718.2380757
https://github.com/ritvikmath/nlp-recipe-project
https://github.com/ritvikmath/nlp-recipe-project
http://im2recipe.csail.mit.edu


Figure 5: Number of Ingredients and Instructions in Full Recipe 1M+ Dataset

C Recipe 1M+ Example Data

Title: Hazelnut Buckwheat Shortbread Dipped in
Dark Chocolate

Ingredients:

• 1/2 cup coconut oil

• 1/4 cup date sugar

• 1/8 teaspoon sea salt, plus a pinch

• 1/8 teaspoon ground cardamom

• 1/8 teaspoon ground cloves

• 1 teaspoon vanilla extract

• 1 cup buckwheat flour, plus extra for rolling
out cookies

• 1/2 cup hazelnut flour

• 1/4 cup water

• 3 ounces dark chocolate (70% cacao)

• 2 tablespoons coconut oil’

Instructions:

1. Preheat the oven to 350 degrees F and gener-
ously dust your work surface with, buckwheat
flour.

2. Lightly grease a cookie sheet and set aside.

3. In a large mixing bowl, using a wooden spoon
or an electric mixer, cream the coconut oil and
date sugar.

4. Add the 1/8 teaspoon salt, cardamom, cloves,
and vanilla.

5. Mix in the buckwheat and hazelnut flours, and
water.

6. When the dough is thoroughly combined, turn
it out onto your work surface.

7. Liberally dust the rolling pin with buckwheat
flour, and roll the dough out to about 1/8 inch
thick.

8. Using your favorite cookie cutter, cut out
shapes (I like to use a glass dipped in flour
as my cookie cutter).

9. With a floured spatula, transfer cookies to the
cookie sheet and bake for 20 minutes.

10. Remove from the oven; leave the cookies on
the pan to cool.

11. Meanwhile, in a double boiler or using a metal
bowl placed on top of a pot of simmering
water, melt the chocolate, coconut oil, and a
pinch of salt.

12. Whisk thoroughly and remove from the heat.

13. You may dip your cookies in the chocolate, or
using a spoon, cover half of each cookie with
a spoonful of chocolate.

14. Alternatively, you can drizzle chocolate on
the cookies for a lacy look. (You may have
leftover chocolate.)

15. Let sit for 1 hour at room temperature before
serving.



D Results

D.1 Cluster Word Occurrence

After performing principal component analysis
and k-means clustering, we analyze clusters
by reviewing the most common unique word5

occurrences (defining words) within each cluster
under each model. We do this to evaluate whether
clusters can be “labeled” by a specific character
or flavor profile. As noted in Section 4.2, we see
that that the number of defining words decreases
as model complexity increases. In Bag of Words,
we see more clear distinction between cluster 1
and cluster 2, where cluster 1 tends to include
ingredients that are more “savory” (e.g. oregano,
rye, tomato) or flavor-neutral (e.g. flax, yeast, rise),
while cluster 2 favors “sweet” ingredients (e.g.
cream, blueberries, almond, vanilla). We see a
smilar behavior in Doc2Vec. Distinction becomes
less evident in LSTM and BERT.

Bag of Words
Cluster 1: ’machin’, ’fast’, ’abm’, ’easi’, ’un-
bleach’, ’soft’, ’vital’, ’bagel’, ’tabl’, ’instant’,
’activ’, ’extra’, ’flax’, ’oregano’, ’french’, ’pita’,
’gluten’, ’italian’, ’sesam’, ’hot’, ’rye’, ’sun-
flow’, ’basil’, ’rise’, ’warm’, ’basic’, ’fluffi’, ’loaf’,
’molass’, ’yeast’, ’yogurt’, ’virgin’, ’tomato’, ’corn-
meal’, ’flake’, ’skim’, ’bun’, ’pizza’, ’rosemari’,
’nonfat’, ’dough’, ’quick’, ’beer’, ’homemad’

Cluster 2: ’lemon’, ’syrup’, ’peanut’, ’mix’,
’cream’, ’ginger’, ’pie’, ’blueberri’, ’ice’, ’biscuit’,
’bar’, ’cranberri’, ’corn’, ’granola’, ’low’, ’sweet’,
’bacon’, ’chicken’, ’cayenn’, ’roast’, ’almond’,
’mustard’, ’vanilla’, ’pork’, ’cocoa’, ’sauc’, ’cooki’,
’soy’, ’red’, ’fat’, ’chip’, ’pecan’, ’pumpkin’,
’extract’, ’nut’, ’appl’, ’pure’, ’light’, ’cornstarch’,
’sour’, ’mapl’, ’egg’, ’nutmeg’, ’dark’

Doc2Vec
Cluster 1: ’machin’, ’canola’, ’easi’, ’unbleach’,
’thyme’, ’plain’, ’instant’, ’activ’, ’granola’, ’flax’,
’cayenn’, ’sesam’, ’parsley’, ’sunflow’, ’rye’,
’honey’, ’rise’, ’warm’, ’soy’, ’yeast’, ’fashion’,
’yogurt’, ’old’, ’cornmeal’, ’flake’, ’pizza’, ’mapl’,
’dough’, ’sea’

Cluster 2: ’clove’, ’shorten’, ’oatmeal’, ’lemon’,
’confectioners’, ’mix’, ’crust’, ’peach’, ’pie’,

5Note that these are stemmed words.

’blueberri’, ’ice’, ’biscuit’, ’bar’, ’low’, ’pastri’,
’heavi’, ’beef’, ’roast’, ’pork’, ’cocoa’, ’cooki’,
’molass’, ’pumpkin’, ’shortbread’, ’appl’, ’cook’,
’cornstarch’, ’sour’, ’nutmeg’

LSTM
Cluster 1: ’roast’, ’plain’, ’cranberri’, ’instant’,
’pizza’, ’easi’, ’nut’, ’granola’, ’oatmeal’, ’molass’,
’blueberri’, ’mix’, ’pumpkin’, ’dough’, ’quick’,
’bar’

Cluster 2: ’substitut’, ’machin’, ’canola’,
’unsweeten’, ’cornmeal’, ’cocoa’, ’carrot’, ’soy’,
’red’, ’low’, ’sour’, ’parmesan’, ’heavi’, ’bacon’,
’vegan’, ’free’

BERT
Cluster 1: ’machin’, ’plain’, ’pork’, ’cayenn’,
’molass’, ’mix’, ’blueberri’, ’sea’, ’bar’

Cluster 2: ’cornmeal’, ’flake’, ’canola’, ’rise’,
’easi’, ’soy’, ’low’, ’bacon’, ’ice’

D.2 Cluster Nutritional Labels

Below are additional plots of the first two principal
components, colored by nutritional labels for fat,
salt, and saturates content. As discussed in Section
4.2, this information was not used to train our mod-
els and serves as a secondary method by which to
analyze the quality of our clusters.

As discussed, nutritional content is “labeled” as
high, medium, and low, which corresponds to the
following: Sugar categories are over 15g (high), 5-
15g (medium), and under 5g (low). Fat categories,
15g, 5-15g, and under 5g. Salt categories are over
1.5, 0.3-105g, and under 0.3g. Saturates categories
are over 5g, 1.5-5g, and under 1.5g.

Figure 6: Fat Level Clustering on Embeddings



Figure 7: Salt Level Clustering on Embeddings

Figure 8: Saturates Level Clustering on Embeddings

For each nutritional category, bag of words tends
to show the most distinguishable clusters, followed
by Doc2Vec. However, overall, figures 6 and 7
show very little clustering related to fat or salt.
Lastly, figure 8 shows some mild clustering based
on saturates for BoW and Doc2vec.


