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Recommended resources

Useful resources

1. Causality - Pearl (2009)

2. Adjustment Criterion - Shpitser, VanderWeele, Robins (2012) [link]
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https://arxiv.org/ftp/arxiv/papers/1203/1203.3515.pdf


Example

Suppose we have a binary treatment (D), some outcome (Y ), and some observed
covariates (X ). We might hope that we can use a “no unobserved confounding” argument
after conditioning on X . So we might hope that we have a DAG something like this:

X

D Y

Assuming this DAG captures the true data generating process (there are no unobserved
confounders or anything else), why does conditioning on X allow us to identify causal
effects?
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Adjustment criterion

You might cite the adjustment (or back-door) criterion. And you’d be right! But why?

Definition (Adjustment criterion)

X satisfies the adjustment criterion relative to D and Y in a causal graph G if

1. No element in X lies on or is a descendant of a node on a causal path from D to Y .a

2. All non-causal paths from D to Y are blocked by X .

aElements of X can be descendants of D if they are not on causal paths from D to Y .

Theorem

Assume the adjustment criterion holds for X and (D,Y ) in G . Then Yd ⊥⊥ D|X .a

aFor every model inducing G .

Recall that Yd ⊥⊥ D|X is called conditional ignorability.
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Identification

Recall the “adjustment formula” for the ATE where we use conditional ignorability. This
is an identification result.1 We identify an expression containing potential outcomes (i.e.,
the ATE) with an expression that does not contain potential outcomes.

ATE = E[Y1i − Y0i ] = E[Y1i ]− E[Y0i ]

=
∑
x

(E[Y1i |Xi = x ]− E[Y0i |Xi = x ])P(Xi = x)

=
∑
x

(E[Y1i |Di = 1,Xi = x ]− E[Y0i |Di = 0,Xi = x ])P(Xi = x) by Ydi ⊥⊥ Di |Xi

=
∑
x

(E[Yi |Di = 1,Xi = x ]− E[Yi |Di = 0,Xi = x ])P(Xi = x) by consistency

This seems nice but how do we connect Ydi ⊥⊥ Di |Xi with what we see in the DAG?
That is, why does the adjustment criterion work?

1
Other identification results, like instrumental variables, use other assumptions in addition to assumptions like conditional ignorability.
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Structrual Causal Models
DAGs are graphical representations of structural causal models.
The structural causal model for our DAG is

Xi = fX (UXi )

Di = fD(Xi ,UDi )

Yi = fY (Di ,Xi ,UYi )

This is a non-parametric (meaning no assumption on the distributions or relationships)
representation of how the variables relate as functions of one another. It is easy to see
that the DAG captures the same relationships (recall, we often do not draw the Us).

X

D Y
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Sub-Models
Potential outcomes are the values for the outcome that a unit would have had, if their
treatment had be Di = d . So POs are actually solutions to the SCM, where we alter the
equation for the treatment to take a particular value of interest. These altered SCMs are
called sub-models. The sub-model in which we, perhaps counterfactually, set the value
of the treatment to be Di = d .

SCM

Xi = fX (UXi )

Di = fD(Xi ,UDi )

Yi = fY (Di ,Xi ,UYi )

Sub-Model

Xi = fX (UXi )

Di = d

Ydi = fY (d ,Xi ,UYi )

In the sub-model, Yi becomes Ydi , the potential outcome, because we have intervened to
set the value of Di to be d . This means that the value of Di that Yi is listening to is now
d and so this is the value that appears in fY (d ,Xi ,UYi ).
The SCM and the sub-model represent to alternative “worlds.” One in which Di is
allowed to take on the value it would naturally and one in which we set Di = d .
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Twin Networks
It is possible to draw a graph for both the SCM and the sub-model. Importantly, since we
are setting D = d , D no longer listens to any other variables in the sub-model.

X

D Y

X

D=d Yd

X is the same as in the SCM and in the sub-model; so we combine the graphs into a single
graph that shows us both the “pre-intervention” world and the “post-intervention” world.

X

D

Y

D = d

Yd

This is called a twin-network.
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Twin Networks
In the twin network and in the SCM + sub-model, we can see how D relates to Yd . They
both listen to X . We easily see that they are d-separated (all paths are blocked between
them) and are equivalently independent, when we condition on X .
Therefore, Yd ̸⊥⊥ D but Yd ⊥⊥ D|X .

SCM

Xi = fX (UXi )

Di = fD(Xi ,UDi )

Yi = fY (Di ,Xi ,UYi )

Sub-Model

Xi = fX (UXi )

Di = d

Ydi = fY (d ,Xi ,UYi )

X

D

Y

D = d

Yd
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Summary
• We’ve seen how conditional ignorability (and possibly other assumptions) can provide
us with identification results that express causal effects in terms of quantities that
can be estimated from the data.

• We’ve also seen how conditional ignorability can be shown on a twin network.
• Twin networks (and DAGs) are graphical representations of SCMs (and sub-models).
• These points show us why and how we can use DAGs to justify assumptions of
conditional ignorability. But you still need to defend your DAG.

We can then actually estimate the quantities from our identification result.

ATE =
∑
x

(E[Yi |Di = 1,Xi = x ]− E[Yi |Di = 0,Xi = x ])P(Xi = x)

Matching, IPW, propensity scores, regression, or more sophisticated approaches cab be
used for estimation, depending on whether our X s are discrete or continuous and how
many X s we have. We will also want to quantify the statistical uncertainty in our
estimates and explore how sensitive our results are to unobserved confounders etc.
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Any remaining time

questions / break
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