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Abstract

We explore the components of modern model-based Bayesian causal inferenece with a focus on ran-
domized experiments. We discuss the potential outcomes framework, the Bayesian approach to causal in-
ference, the MCMC sampling method Hamiltonian Monte Carlo, and the Stan probabilistic programming
language. We also work through a simple example to illustrate how these components come together.

1 Introduction

Causal inference has experienced a renaissance over the last decade with redoubled efforts to expose the
assumptions and limitations, as well as promise and importance, of casual inquiry. At the same time Hamil-
tonian Monte Carlo methods have dramatically improved the efficiency of sampling methods and has been
built into probabilistic programming languages like Stan. These trends together promise to push the capa-
bilities of Bayesian causal inference further than ever before. We follow Lee, Feller, and Rabe-Hesketh (2019)
and Imbens and Rubin (2015) as guides to exploring how Hamiltonian Monte Carlo and probabilistic pro-
gramming languages can be used in Bayesian causal inference. The focus here is on randomized experiments
and model-based inference implemented in Stan, but the methods can be adapted for observational studies
and other identification strategies. The primary goal of this paper is to explore the components of modern
model-based Bayesian causal inferenece with a focus on randomized experiments. This includes the potential
outcomes framework, the Bayesian approach to causal inference, the MCMC sampling method Hamiltonian
Monte Carlo, and the Stan probabilistic programming language.

The potential outcomes framework for causal inference introduced by Rubin (1978) has become one of the
most popular paradigms for the investigation of causal quantities. It allows us to seperate the treatment
assignment mechanism from the model of the potential outcomes, which can clarify the modeling and as-
sumptions required in causal inquiry. This framework can be applied in a variety of ways. One of the
conceptually most simple versions of this is to take a model-based Bayesian approach. In this setting, the
unobserved potential outcomes are viewed as random variables. We start with assumptions about the model
for the joint distribution over the potential outcomes and the model for the treatment assignment mechanism.
These can be used to derive a model for the posterior distribution over the unobserved potential outcomes,
which allows us to impute them conditional on the observed data. From there, it is simple to estimate any
causal quantities of interest. This analysis can be done analytically only in very simple situations. Therefore,
we use a simulation strategy to build a simulated posterior distribution for the causal quantities of interest.
This simulation strategy necessitates efficient sampling from the posterior distribution over the model pa-
rameters, given the observed data. Hence, we employ Markov Chain Monte Carlo (MCMC) methods to do
the sampling. Given that modern statistical problems are increasingly high-dimensional, we focus on Hamil-
tonian Monte Carlo (HMC) methods as a way to avoid the issues that more traditional MCMC methods
like random-walk Metropolis Hastings run into in high dimensions. HMC very efficiently explores the target
distribution’s state space. The Stan probabilistic programming language is a state-of-the-art language for
implementing HMC applied to statistical problems. It is particularly well suited for the type of model-based
Bayesian inference we discuss in this paper. Stan allows us to write code that looks like statistical notation
to model and sample from the posterior distribution over our unobserved potential outcomes. Thus, we are
very easily able to implement the simulation approach to Bayesian inference.
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This paper will proceed by first touching on the conceptual foundations of the various topics and the details
of how the topics relate and are used together. We then see a simple example application using the National
Supported Work (NSW) experimental dataset.

2 Potential Outcomes Framework for Causal Inference

An important line of causal inquiry is focused on understanding the effects of some intervention on a system
or population. We want to know the causal effect of this intervention or treatment on some measure
related the system or population, which we’ll call the outcome. The population could be Covid-19 patients,
the treatment could be administration of some new theraputic, and the outcome could be mortality rate.
Alternatively, we might be interested in how a certain economic policy effects some measure of inequality in
the US. Many real-world statistical questions are causal in nature and interventions are an important type
of causal question.1

How should we go about determining what the causal effect of the treatment was on the outcome? One
answer is to view the problem within the potential outcomes framework. For every member of the population
or observation of a system (call these units) there are two possibilities with respect to the treatment. The
unit can be either treated or left untreated. In each case we assume that there is a constant value of the
outcome for the unit. That is, if the unit recieves the treatment, we observe the treatment potential outcome.
If the unit is not treated, we observe the control potential outcome. For every unit, we can only observe one of
these states and, therefore, only one potential outcome. However, every unit still has two potential outcomes
and the difference between the two is the effect of the treatment on that unit. Thus, there is a seperate
treatment effect for every unit. Note that this is a counterfactual compairson. The fundamental problem of
causal inference is that we can only ever observe one potential outcome for each unit, but we need both to
understand the treatment effect. We are able to solve this problem only by introducing assumptions about
the nature of the data (as in observational studies) or by imposing a design on the data generation process
(as in randomized experiments). We can thus view causal inference as a missing data problem wherein we
approximate the missing potential outcomes using assumptions and design. This is what is referred to as an
identification strategy.

Note that a key feature of the potential outcomes model is that it allows us to treat the underlying model of
the potential outcomes seperately from the treatment assignment mechanism. Treatment assignment is the
mechanism through which some units end up being treated and some not. This can be designed or might
occur through natural mechanisms. In many cases the ideal treatment assignment mechanism is random
assignment. As we’ll discuss further below, random assignment can help average out factors that might
confound the treatment’s effect on the outcome.

We’ll now discuss potential outcomes a bit more formally. Say we have a sample of N units, i = 1, ..., N ,
and a treatment Di = {0, 1} for which we want to understand the effect on outcome Yi ∈ R. The potential
outcomes framework holds that each unit has two potential outcomes Y0i and Y1i. Y0i is the value of Yi

when unit i does not recieve the treatment, i.e., Di = 0. Y1i is the value of Yi when unit i does recieve
the treatment, i.e., Di = 1. Again, note that in practice only one potential outcome for each unit can be
observed. Hence, causal inference is about finding a way to identify something unobserved with something
that is observed using assumptions or design as a way to solve the missing data problem. It is clear that the
observed potential outcomes and missing potential outcomes can be written

Y obs
i = Y1iDi + Y0i(1−Di)
Y mis

i = Y1i(1−Di) + Y0iDi

We are usually primarily interested in estimating casual estimands like the average treatment effect (ATE),
average treatment effect among the treated (ATT), or average treatment effect among the controls (ATC),

1This section draws Hazlett (2020b); Hazlett (2020a); Morgan and Winship (2014); and Imbens and Rubin (2015).
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which aggregate the individual treatment effects across the entire popoulation under study or some subpop-
ulation. We see that all of these quanties involve both potential outcomes for some units. Thus, in practice,
they will involve some unobserved quantities. Our task will be to identify these unobserved quantities with
some observed quantities or to impute them, through assumptions. We will then be able to use the observed
and/or imputed quantities to estimate causal estimands like ATE to better understand the underlying causal
relationship between the treatment and the outcome.

ATE = E[Y1i − Y0i]
ATT = E[Y1i − Y0i|Di = 1]
ATC = E[Y1i − Y0i|Di = 0]

In what follows, we focus on randomized experiments, which is a specific identification strategy. The po-
tential outcome framework, however, can be applied to a wide variety of other identification strategies (e.g.,
conditional on observables, instrumental variables, difference-in-difference, regression discontinuity). The
key assumption in randomized experiments is that {Y0i, Y1i} ⊥ Di. That is, the treatment assignment is
independent of the potential outcomes. In randomized experiments, this is usually ensured in expectation
based on the fact that treatments are assigned randomly. However, it it possible that in finite samples, the
assumption is not exactly true. There are strategies to address this problem, for example conditioning on
observable covariates. However, there is always the possibility that the randomized treatment assignment
is not completely random in any given finite sample. (Note that this is a seperate issue from selection bias
that comes up in non-randomized designs, in which teratment assignment might have systematic bias to
treat certain types of units.) Another important assumption is the stable unit treatment value assumption
(SUTVA), which states that one unit being treated does not effect the potential outcomes of another unit.
This may not be the case in practice but is often assumed for simplicity. Our discussion will likewise assume
stable unit treatment values.

We’ll now discuss the independence of potential outcomes assumption and what it buys us. Armed with this
assumption, we can show how to identify the ATE with observed quantities. As mentioned above,

ATE = E[Y1i − Y0i].

We’ve also assumed independence of potential outcomes:

{Y0i, Y1i} ⊥ Di.

Thus we can identify the ATE as follows.

ATE = E[Y1i − Y0i]
= E[Y1i]− E[Y0i]
= E[Y1i|D1 = 1]− E[Y0i|D1 = 0] by random assignment of treatment
= E[Y1iDi + Y0i(1−Di)|D1 = 1]− E[Y1iDi + Y0i(1−Di)|D1 = 0] becasue of conditionals
= E[Y obs

i |D1 = 1]− E[Y obs
i |D1 = 0] by definition of Y obs

i

= observed difference in means

So we’ve shown that our independence of potential outcomes assumption allows us to identify the ATE with
the simple observed difference in means (i.e., the difference in the observed average outcome for treated units
and the observed average outcome for control units). As usual, we can estimate the observed expectations
with the sample averages.
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observed difference in means = E[Y obs
i |D1 = 1]− E[Y obs

i |D1 = 0]

= 1
N1

N1∑
i=1

Y obs
i,treated −

1
N0

N0∑
i=1

Y obs
i,control

Thus far, we’ve only discussed how to get a point estimate of caual quantities like ATE, ATT, and ATC.
In the next section we’ll explore the Bayesian perspective on causal inference which will also allow us to
estimate such quantities of interest, in addition to giving us imputations of the unit-level missing potential
outcomes. Thus, in the Bayesian framework, we are able to estimate any causal quantity of interest as well
as evaluate simulate from posterior distributions that will allow us to better undersand the distribution of
estimates.

3 Bayesian Causal Inference

For each unit, there are two observed quantities (Di, Y
obs

i ) and one missing quantity (Y mis
i ). The Bayesian

causal inference views these three quantities as random variables which are drawn from an underlying joint
probability distribution. The Bayesian perspective views the missing potential outcomes as unobserved
random variables. The main goal of Bayesian inference here is to create a model for posterior distribution
of the missing potential outcomes, given the observed potential outcomes and the treatment assignments.2

Pr(Y mis|Y obs, D)

Such a model will allow us to derive the distribution for the causal estimand of interest, τ(Y0, Y1, D).3
Pr(Y mis|Y obs, D) depends, crucially, on the joint distribution of potential outcomes, Pr(Y0, Y1), and on the
treatment assignment mechanism, Pr(D|Y1, Y0). Pr(Y0, Y1) usually requires subject matter expertise and
can be very difficult to choose. Pr(D|Y1, Y0) is a probabilistic rule that determines which units are treated.
In randomized experiments, this mechanism is known.4 That is, randomization makes the specification of
Pr(D|Y1, Y0) unnecessary. In fact, for our purposes, Pr(D|Y1, Y0) = 1/

(
N
Nt

)
, where

∑N
i=1 Di = Nt. In obser-

vational studies, we would also have to model the treatment assignment mechanism, Pr(D|Y0, Y1, θ). Note
that we can also allow for observed covariates, Xi, which might allow us to correct for any imbalance after
treatment assignment is carried out on our finite sample. For now, we omit such covariates for simplicity. As
we’ve seen, the Bayesian model-based approach to causal inference within the potential outcomes framework
allows us to consider Pr(Y0, Y1) and Pr(D|Y1, Y0) seperately.

We’ll now step through how to move from specifying a model for Pr(Y0, Y1) to arriving at a model for
Pr(Y mis|Y obs, D) and, finally, for Pr(τ |Y obs, D). This consists of five main parts.

• Choose a joint distribution over potential outcomes, Pr(Y0, Y1), or Pr(Y0, Y1|θ) and priors for θ.
• Derive Pr(Y mis|Y obs, D, θ).
• Derive Pr(θ|Y obs, D).
• Combine Pr(Y mis|Y obs, D, θ) and Pr(θ|Y obs, D) to get Pr(Y mis|Y obs, D), by integrating over θ.
• Use τ(Y0, Y1) and Pr(Y mis|Y obs, D) to get Pr(τ |Y obs, D).
2This section draws on Li (2019), Imbens and Rubin (2015), and Lee, Feller, and Rabe-Hesketh (2019).
3Note that τ could be the ATE, ATT, ATC, or percentile treatment effects or the standard deviation of treatment effects,

among a variety of other possible quantities of interest.
4In randomized experiments, this mechanism is controlled in large part by the researchers. However, issues like non-

compliance and attrition can lead to non-random assignment even in randomized experiments. But, generally, these issues have
straightforward solutions.
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3.1 Joint Distribution Over Potential Outcomes, Pr(Y0, Y1)

The joint distribution of potential outcomes, Pr(Y0, Y1), is an input to the Bayesian causal inference frame-
work. Under some relatively weak restrictions,5 we can write Pr(Y0, Y1) as an integral over the product of N
IID unit-level distributions, with common parameter vector θ and prior distribution over these parameters
Pr(θ).

Pr(Y1, Y0) =
∫ N∏

i=1
Pr(Y1i, Y0i|θ)Pr(θ)dθ

Again, Pr(Y1i, Y0i|θ) is a modeling degree of freedom. This can, again, be difficult to model and usually
requires subject matter expertise. Results can be robust to this choice, however, for randomized experiments.
How to choose the prior, Pr(θ), also requires care; but results are also generally robust to this choice for
randomized experiments.

3.2 Conditional Distribution over Missing Potential Outcomes, Pr(Y mis|Y obs, D, θ)

We can combine the conditional dsitribution over treatment assignments, Pr(D|Y0, Y1, θ), and the model for
the joint distribution over potential outcomes, conditional on θ, Pr(Y1, Y0|θ), to get the the joint distribution
over treatment assignment and the potential outcomes, given the parameters, Pr(D,Y0, Y1|θ).6

Pr(D,Y0, Y1|θ) = Pr(D|Y0, Y1, θ)Pr(Y1, Y0|θ)

We can then use Pr(D,Y0, Y1|θ) to get the conditional distribution of the potential outcomes given treatment
assignments and parameters. Note that randomization means that the treatment is independent of the
potential outcomes, {Y0, Y1} ⊥ D. So this expression simplifies.

Pr(Y0, Y1|D, θ) = Pr(Y0, Y1, D|θ)
Pr(D|θ) = Pr(Y0, Y1, D|θ)∫

Pr(y0, y1, D|θ)dy0dy1
= Pr(Y0, Y1|θ)

Now we must transform Pr(Y0, Y1|D, θ) to Pr(Y mis|Y obs, D, θ). It is easy to write Y mis and Y obs as functions
of Y0, Y1, and D. And so we can write (Y mis, Y obs) = g(Y0, Y1, D), where g is the transformation.

Y obs
i =

{
Y0i, if Di = 0
Y1i, if Di = 1

, Y mis
i =

{
Y0i, if Di = 1
Y1i, if Di = 0

So we can transform Pr(Y0, Y1|D, θ) to Pr(Y mis, Y obs|D, θ). This then allows us to get Pr(Y mis|Y obs, D, θ).

Pr(Y mis|Y obs, D, θ) = Pr(Y mis, Y obs|D, θ)
Pr(Y obs|D, θ) = Pr(Y mis, Y obs|D, θ)∫

Pr(ymis, Y obs|D, θ)dymis

3.3 Conditional Distribution over Parameters, Pr(θ|Y obs, D)

To get the posterior conditional distribution over the parameters, Pr(θ|Y obs, D), we combine the prior
over the parameters, Pr(θ), and the likelihood of the observed data given the parameters, Pr(Y obs, D|θ).
But we first need to get the likelihood by marginalizing out the missing potential outcomes from
Pr(Y mis, Y obs|D, θ) = Pr(Y mis, Y obs, D|θ), which we derived above.

5See Imbens and Rubin (2015) page 152.
6Both of the distributions we use here are either chosen by the researcher or come from the randomized experiment design.

5



Pr(Y obs, D|θ) =
∫

Pr(ymis, Y obs, D|θ)dymis

Then combine the priors and likelihood to get the desired result.

Pr(θ|Y obs, D) = Pr(θ)Pr(Y obs, D|θ)
Pr(Y obs, D) = Pr(θ)Pr(Y obs, D|θ)∫

Pr(θ)Pr(Y obs, D|θ)dθ

3.4 Conditional Distribution over Missing Potential Outcomes, Pr(Y mis|Y obs, D)

Next we’ll combine Pr(Y mis|Y obs, D, θ) and Pr(θ|Y obs, D) to get Pr(Y mis, θ|Y obs, D). We can then marginal-
ize to get Pr(Y mis|Y obs, D).

Pr(Y mis, θ|Y obs, D) = Pr(Y mis|Y obs, D, θ)Pr(θ|Y obs, D)

Pr(Y mis|Y obs, D) =
∫

Pr(Y mis, θ|Y obs, D)dθ

Pr(Y mis|Y obs, D) is the “posterior predictive distribution” of Y mis.

3.5 Conditional Distribution over Causal Estimand, Pr(τ |Y obs, D)

Now we can use Pr(Y mis|Y obs, D) and the observed data to get Pr(τ |Y obs, D). We do this by transforming the
estimand τ(Y0, Y1, D) to τ(Y mis, Y obs, D), in a manner similar to the transformation to Y mis, Y obs above.
Thus, we’ve arrived at the posterior distribution over the causal estimand of interest. Stated differently,
we are able to impute the missing potential outcomes and use these to estimate the causal quantity of
interest. That is, we can impute the control potential outcomes for treated units and we can impute the
treatment potential outcomes for control units. We can then calculate the posterior distribution of causal
estimands of the form τ(Y mis, Y obs, D). This is because Y obs and D are known and we can predict Y mis

using Pr(Y mis|Y obs, D). This approach incorporates two types of uncertainty. First, this incorporates
uncertainty from parameter estimation, which is captured in the distribution Pr(θ|Y obs, D). Second, this
incorporates unccertainty from imputation, which is captured in the distribution Pr(Y mis|θ, Y obs, D). So we
see uncertainty coming in from sampling the model parameters from the posterior over the model parameter
and we se uncertainty coming in from sampling the imputed potential outcomes from the posterior over the
missing potential outcomes, given the observed potential outcaomes, the treatment assignements, and the
parameters.

3.6 Estimating Causal Quantities of Interest

Now that we have an imputed value for the missing potential outcome for each unit, we are able to estimate
causal quantities of interest like average treatment effect (ATE), average treatment effect among treated
(ATT), average treatment effect among controls (ATC), and others. This is because we have not only the
imputed, formerly missing, potential outcomes for each unit but we also have the original observed potential
outcomes for each unit. So we are easily able to estimate the treatment effect for each unit. These individual
unit-level treatment effects can be aggregated in a variety of ways to estimate the previously mentioned
causal quantities of ineterest. These are calculated as follows.
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ATE = E[Y1i − Y0i] = 1
N

N∑
i=1

[Y1i − Y0i]

ATT = E[Y1i − Y0i|Di = 1] = 1
N1

N1∑
i=1

[Y1i − Y0i]

ATC = E[Y1i − Y0i|Di = 0] = 1
N0

N0∑
i=1

[Y1i − Y0i]

These are similar to the estimates of these causal quantities that we saw before. However, now we have
found a way to impute a value for both potential outcomes for each unit. So we have access to the individual
unit-level treatment effects, as well as any agregation of these one might be interested in.

We are able to view the treatment effect as either for the specific finite sample that we’ve observed or for
a random sample from an infinte super-population. This means that the random sample is antoher source
of uncertainty, in addition to uncertainty from imputation and uncertainty from parameter estimation. The
super-population average treatment effect is the expectation over all distribution of finite sample average
treatment effects that come from sampling from the infinite super-population. This can be written as

ATEsp = Esp[ATEfs] = Esp[Y 1 − Y 0]

We’ll show how the super-population and finite-sample ATE’s compare in our example below, but here we
just note that the super-popualtion ATE is less precise and has a wider posterior distribution due to the
additional source of uncertainty.

3.7 Simulation Approach

In many settings analytical solutions to the above are not feasible or are very difficult due to having to evaluate
a complicated intergral. A simulation approach, however, is easy to implement and more broadly applicable
than analytic methods for deriving the posterior. This approach, thus, explicitly involves imputation of the
missing potential outcomes. To do this, we use Pr(Y mis|Y obs, D, θ) and Pr(θ|Y obs, D) to repeatedly impute
the missing potential outcomes.

That is, we repeat the following steps many times to get a simulated posterior for τ .

• First, we draw θ ∼ Pr(θ|Y obs, D).
• Second, we input this value for θ into Pr(Y mis|Y obs, D, θ) to impute all of the missing potential out-

comes. Note that we do not impute each missing potential outcome seperately. We impute all of them
together without redrawing values for θ.

• These can be used to get an estimate of τ .

We can then take the average or other summary statistics of the simiulated posterior of τ to estimate our
causal quantities of interest.
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4 Hamiltonian Monte Carlo

We now need a way to efficiently sample from the distributions discussed above in order to impute the missing
potential outcomes for each unit and then estimate our causal quantities of interest. This can be done with
various techniques, including Markov Chain Monte Carlo (MCMC) sampling methods like Gibbs Sampling
or Metropolis Hastings.7 However, such methods do not make as effeccient use of computation as we might
like and can fail in high dimensions, as we’ll discuss below. Hamiltonian Monte Carlo (HMC) methods
have grown in popularity recently because they address this problem in a suprising and powerful manner.
“Instead of relying on fragile heuristics, the method is built upon a rich theoretical foundation that makes
it uniquely suited to the high-dimensional problems of applied interest.”8 HMC is an auxulliary variables
MCMC method that introduces “momentum” variables to facilitate more efficient movement through the
original state space by moving in the joint space and then marginalizing back to the original state space.
It’s fully realized form follows the Metropoolis-Hasting algorithimic proposal-acceptance framework. In this
section, we’ll develop some intuition for how HMC works and why it can be an improvement over other
sampling methods. We’ll also discuss some of the mathematical details of how the algorithm works.9

Often we are interested in sampling from a target distribution as a means to calculate the Monte Carlo
estimate of some function of that target distribution. In many cases, what we’re primarily interested in are
the expectations of target distributions. For the purposes of this discussion (and as a requirement of HMC),
we’ll focus on smooth or continuous densities.10 Thus, evaluating expectations means evaluating integrals.
For complex distributions this can be exceedingly difficult. Hence, Monte Carlo approximation is often used.
For our current purposes, we are interested in understanding posterior distributions over model parameter
values and in particular the expected values of these posterior distributions. Our discussion related to the
intuition for HMC will follow some of the language and set up of Betancourt (2017) and will focus on
expectations. We’ll clarify which elements are most important to our present uses as we carry on.

4.1 Typical Set

Clearly, it is most efficient to focus on sampling from the regions of the target distribution that play the
largest role in the expectations, rather than regions that contribute negligabily to the expectations of interest.
Expectations are calculated by evaluating an integral over a volume in the parameter space. There are two
components to this: the volumne we’re integrating over and the density at each location in the space. There
is a tension between these two in terms of contribution to the integral / expectations. Areas with high density
are necessarily small in volume; conversely, areas with low density are necessarily large in volume. We must
consider the dynamics between density and volume in determining which portions of the target distribution
are most important for evaluating expectations. In high-dimensional spaces, the regions that contribute most
to expectations concentrate distant from either extreme of the distribution, the mode or the tails. That is,
the regions near the mode end up having too small of volume for these regions to contribute significantly to
expectations; while the density in regions very far from the mode is too small for these regions to contribute
significantly to expectations. These conflicting forces are balanced in the region called the typical set, whose
contribution to expectations is significant. The typical set in very high dimensions narrows as the volume
near the mode shrinks and the density of more dsitant regions vanishes. Thus, in high dimensions significant
contributions to expectations only come from the typical set.11 It’s easy to see that it would be very useful
to be able to sample from the typical set only and not waste computation exploring and sampling regions of
the target distribution that are not in the typical set. This will be the focus of MCMC in general and HMC
in particular.

7Li (2019)
8Betancourt (2017)
9This section draws on Betancourt (2017) and Handcock (2020).

10We require this because we will be taking derivatives of the energy function.
11Note that, even if expectations are not of interest, the typical set in such high-dimensional settings is still important for

understanding the distribution for the same reasons as for expectations. The volume near the mode vanishes and the density
far from the mode vanishes. Thus most samples from the distribution will come from the typical set.
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4.2 MCMC

The goal of Markov Chain Monte Carlo methods is to randomly explore the typical set, sampling as we go
along, as a way to calculate Monte Carlo approximations of expectations. MCMC methods are designed such
that they will eventually explore the typical set and yeild useful estimates. It is possible that typical MCMC
methods will not be able to explore sufficiently in finite time, however. We’ll discuss some of the principles
of MCMC and the Metropolis-Hastings approach and then show how these can fail in high dimensions.

“A Markov chain is a progression of points in [state] space generated by sequentially applying a random map
known as a Markov transition.”12 The Markov transition defines the probability of moving from one state to
another. When a Markov transition ensures that a sample of states following a specific distribution will move
these sample states to a new set of states that also follow the same distribution, we have that the Markov
chain is balanced and will continue to produce samples from the distribution of interest. We can use this
fact to construct a Markov transition that explores the states of a target distribution of interest. Crucually,
it can be shown that, given a properly defined Markov transition, any randomly initialized markov chain
will eventually converge to the target distribution and, thereafter, only produce samples from the target
distribution.13 In other words, the Markov chain will eventually drift into the typical set and then begin to
move through the typical set. With enough iterations, the Markov chain will serve as a useful approximation
of the typical set. We can then use the resulting sequence of states from such a Markov chain as a sample
from the target distribution and, hence, calculate Monte Carlo approximations of quantities of interest like
expectations.

Markov chains, under ideal conditions, exhibit three stages of behavior. First, the chain moves toward the
typical set from its initial starting position in state space. During this stage, the chain does not represent
a useful sample from the target distribution. This pahse is called the “burn in.” The second stage starts
when the chain first reaches the typical set and makes it’s first journey through the typical set. During
this stage, the chain starts to resemble a sample from the target distribution and estimation based off the
chain improves greatly. The third stage follows the first traversal of the typical set and constitutes the chain
exploring the finer details of the typical set. This stage sees subtler distributional details being picked up
and gradual improvement in estimation based off the chain. It is important to acknowledge that there are
“pathological” distribution behaviors that can lead to important parts of the distribution not being captured
well.14 However, for our current purposes, we’ll omit a discussion of these issues. We will note that the R̂
statistic quantifies the variation across simultaneous Markov several chains initialized from various locations
in the state space. This can be used to identify when some chains are struggling with potential pathelogical
portions of the distribution.15

4.3 Metropolis-Hastings

So how might we construct a Markov transition that suits our needs (i.e., is balanced and leads to exploration
of the typical set)? Likely the most popular solution is the Metropolis-Hastings (MH) Algorithm.16 The MH
algorithm works as follows. Start at some initial state. First, stochastically select a proposal state as the
next state. The proposal is usually chosen from some proposal distribution, h(s′|s), where s is the current
state and s′ is the proposed state. Second, choose to move to the proposal state with probability defined by
the MH acceptance probability. The MH acceptance probability is carefully designed so that proposals that
are too far from the typical set are not accepted. Below π(s) is the target distribution.

MH Acceptance Probability = min
[
1, h(s|s′)π(s′)
h(s′|s)π(s)

]
12Betancourt (2017)
13Betancourt (2017)
14See Betancourt (2017) for more discussion.
15If R̂ is not 1 then there are likely pathologies.
16Metropolis et al. (1953), Hastings (1970)
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Note that when the proposal distribution is symmetric, the MH acceptance probability formula simplifies
some. An important portion of implementing this algorithm in practice is carefully chosing the proposal
distribution so that we are able to accept enough proposals to be efficient.17 The proposal distribution will
propose states across a wide volume of the state space, but the acceptance rate ensures that we usually reject
proposals that are too far from the typical set. Thus, MH will explore the typical set when given enough
iterations, with relatively few deviations from this.

Metropolis-Hastings Algorithm

1. Initialize Markov chain at s.
2. For 1 to n:
3. Draw s' ~ h(s'|s).
4. Draw u ~ Uniform[0,1].
5. Calculate MH Acceptance Probability a = min(1,(h(s'|s)pi(s'))/(h(s|s')pi(s))).
6. If u<a, accept s'.
7. Else stay at s.

Again, the beauty of MH is that a well chosen proposal distribution will help explore the entire target
distribution state space, while the accpetance probability ensures that the states that are accepted in the
chain are exactly prorportional to their density in the target distribution. However, in high dimensions
this starts to breakdown. In these settings, the volume outside the typical set becomes exponentially larger
relative to the volume within. So the algorithm will end up proposing states in the tails of the target
distribution, where the density is extremely low. Thus, the acceptance probability will be very small as
well and most proposals will be rejected. So MH becomes very inefficient in high-dimensions, with many
proposals going unused.18 Thus, we end up exploring the typical set very slowly.

HMC is a significant improvement over these methods in that it is able to directly explore just the area
around the typical set. Therefore, we sample only from the most impactful regions of the target distribution
and do so without wasting computation and time.

4.4 HMC, Newtonian Mechanics, &
Efficient Exploration of High-Dimensional State Space

As mentioned above, Hamiltonian Monte Carlo methods improve on other MCMC methods by more directly
targeting the typical set and more efficiently drawing samples from the typical set. The mechanisms through
which HMC achieves this have simple but suprising intuitions. The goal of HMC is to define a Markov
transition kernel that closely follows the contours of the typical set, without falling into low acceptance
situations like we saw for MH. To do this, we want to define a vector field that follows the typical set in
the state space. When at a given state, we want to follow the vector field for some amount of time and
then arrive at a new point that is also in the typical set. Moving through the state space thus, we efficiently
explore the typical set as opposed to moving around at random and accepting and rejecting based on whether
a proposal is near the typical set. This is the key point that distinguishes HMC. It only proposes states that
are in or very close to the typical set. So we efficiently explore the state space, minimizing computation but
still concentrating on the typical set.

This efficient movement is achieved by leveraging the geometry of the target distribution. Specifically, we use
the gradient of the probability density function to move through the state space on contours of the density
that have equal probability. It turns out that the differential geometry to achieve this movement through
state space is mathematically equivalent to the dynamics of physical systems under Newtonian Mechanics.
That is, staying in the typical set in our state space is mathematically equivalent to keeping a satellite in

17As might be intuitive, the best proposal distribution is the target distribution. So in practice, we want the proposal
distribution to be as similar as possible to the target distribution. This can be difficult to achieve.

18Note that, given infinite time, MH in high-dimensions will sitll converge. But we dont have infinite time.
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orbit around a planet. In particular we must balance momentum and gravity. In the metaphor of the planet
and satellite, as the satellite falls towards the planet, due to the pull of gravity, momentum grows until the
satellite is pushed away from the planet. As the satellite starts to move further from the planet, momentum
decreases and gravity is able to pull the satellite back towards the planet. These counterbalancing behaviors
keep the planet in orbit perpetually.

Our goal is to find a way to mimic this behaviour in our exploration of the target distribution’s state space,
where each “orbit” is a contour of equal probability. “[T]he key to twisting the gradient vector field into
a vector field aligned with the typical set, and hence one capable of generating efficient exploration, is to
expand our original probabilistic system with the introduction of auxiliary momentum parameters.”19 We
will need to ensure that these momentum auxillary variables have a distribution that ensures conservation
of energy in the way described above. To add momentum, we expand the target distribution state space to
“joint space” that includes position, q, and momentum, p. We also then “lift” the target distribution up into
to a joint distribution on the joint space with the choice of a conditional distribution over the momentum
variable.

π(q, p) = π(p|q)π(q)

This garauntees that trajectories exploring the typical set of the phase space project down to trajectories
exploring the typical set of the target distribution. Hence, the addition of the auxiliary variables allow us to
efficiently explore typical set of the target distribution state space by exploring the typical set of the joint
space. We can write the joint distribution in terms of a Hamiltonian, H(q, p), which captures the geometry of
the joint space, including the typical set of the joint space, because it captures both position and momentum.
The value of the hamiltonian at any point in joint space is called the energy at that point.20 We’ll use the
gradients of this to identify exactly how we can move in the joint space to preserve total energy and thus
efficiently move through the typical set.

π(q, p) = e−H(q,p) ⇐⇒ H(q, p) = − log π(q, p)
= − log[π(p|q)π(q)]
= − log π(p|q)− log π(q)
≡ K(p, q) + V (q)
= kinetic energy + potential energy

The Hamiltonian can be decomposed into two terms that can be called kenetic and potential energy. Kinetic
energy is a distribution over the joint space and potential energy corresponds to the target distribution.
Kinetic energy must be sepcified for the actual implementation.

Given that the Hamiltonian captures the geometry of the joint space and the typical set of the joint space,
we can use it to generate the vector field aligned with the typical set of the joint space that we can use to
efficiently traverse the typical set in the original state space. This is achieved by using Hamilton’s equations.21

These prescribe how to balance kinetic and potential energy for a given total energy as we move through
time.

dq

dt
= ∂H

∂p
= ∂K

∂p

dp

dt
= −∂H

∂q
= −∂K

∂q
− ∂V

∂q

Importantly, note that ∂V
∂q is the gradient of the log of the target distribution. So by incorporating the

momentum variables and using Hamilton’s equations, we are able to move through the joint space following
19Betancourt (2017)
20The notation and description in this section draw on Betancourt (2017).
21Handcock (2020)
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contours of equal probability. This allows us to move directly through the typical set in the joint space, once
we find it initially. We are then able to project down onto the original state space and also move directly
around the target distribution typical set.

In short, HMC boils down to the following steps. Given some point in the original state space, we sample
from the conditional distribution of momentum given position, π(p|q), to get a point in the joint space.
Once in the joint space, we explore the typical set of the joint space for some time by integrating Hamilton’s
equations. Since the joint dististrubition and space is chosen according to the Hamiltonian, the trajectory
on the typical set in joint space projects down onto the typical set in the original state space.

It is important to note that, while we are traversing a Hamiltonian trajectory in the joint space, we are in
reality exploring a “level set” of constant energy in a deterministic manner. However, the transition up from
the original state space to the joint space involves a stochastic selection of momentum from the conditional
distribution π(p|q), which corresponds to a stochastic choice of energy level set in the joint space. So HMC
involves stochastic elevations into energy level sets in joint space, deterministic traversal of these level sets,
and projection back down into the target distribution state space. The choice of π(p|q) is what allows us
to stay in the typical set in both spaces, assuming that the intial point was in the typical set of the target
distribution. This is similar to the choice of proposal distribution in Metropolis Hastings. This will be
discussed further in the next section. Of practical importance are the choices of how long to traverse the
Hamiltonian trajectories, how to actually integrate these, and specifically how to choose π(p|q). We will
discuss how Stan approaches these issues below.

As we’ve seen, we can build a Markov chain that becomes an efficiently drawn sample from the target
distribution state space that is concentrated on the target distribution’s typical set, even in high dimensions.

4.5 HMC in Practice

There are a number of “algorithmic degrees of freedom” that must be delt with in HMC, as well as other
practicalities that alter the form of fully realized implementations of HMC. We will discuss these issues here
following how they are presented in Betancourt (2017). However, details specific to the Stan implementation
of HMC are left for below.

Among the algorithmic degrees of freedom in HMC is the conditional distribution over momentum, given
position or, alternatively, the kinetic energy function. There are an infinite number of possible distributions
over momentum. A family of often used distributions is that of Euclidean-Gaussian distributions. These
are of the following form and are independent of position.22 Such choices for kinetic energy can simplify
derivation and calculation. Other alternatives include Riemannian-Gaussian kinetic energy and various
non-Gaussian kinetic energies.

π(p|q) = N(0,Σ)

=⇒ K(p, q) = 1
2p
>Σ−1p+ log |Σ|+ constant

Another choice that must be made to implemnt HMC is the choice of integration time. That is, how long to
traverse Hamiltonian trajectories in the joint space before projecting back down to the target distribution
state space. There is an inherent tradeoff in this choice. Short integration times might not take advantage
fully of the main benefits of HMC that allow for efficient and fast exploration of the typical set. However,
long integration times might lead us back close to where we started in addition to increasing computation.
Note that no single integration time will be optimal everywhere. Thus, dynamic selection of integration time
is best. How this might be done is beyond the scope of this section but below we’ll touch on the choices
made for Stan below (use of the No-U-Turn termination criterion).

When running HMC in practice, a problem we encouter is that we cannot solve the Hamiltonian equations
(and hence follow the Hamiltonian trajectories) exactly. Numerical approximation is necessary and numerical

22Betancourt (2017), Handcock (2020)

12



inaccuracies can compound as we traverse the Hamiltonian trajectory. This error pushes us from the true
trajectory. The typical solution to this is to use symplectic integrators, which oscillate near the true trajectory
without diverging too much in any direction. A common choice of symplectic inegrator is the leapfrog
integrator, which works with Euclidean-Gaussian kinetic energies. The idea behind this integrator is fairly
simple. We essentially break the discretized update steps wherein we update momentum and position into
a half step for momentum, a full step for position, followed by a half step for momentum. Note that regions
of high curvature in the target distribution are particularly difficult for these sorts of integrators, which will
diverge quickly towards infinity in such regions. This can actually be viewed as a feature, rather than a bug
in that divergences can make it easier to detect problematic geometries.

Leapfrog Integrator

1. Initialize q and p.
2. For 0 <= n < floor(T/eps):
3. p(n+1/2) = p(n) - eps/2 * dV/dq * q(n)
4. q(n+1) = q(n) + eps * p(n+1/2)
5. p(n+1) = p(n+1/2) - eps/2 * dV/dq * q(n+1)

While sympletic integrators do well, they still introduce some bias that we need to correct for. This is done by
treating the Hamiltonian transition state as a proposal for a Metropolis-Hastings approach on the joint space
that we accept or reject to correct for the bias. We alter the Hamiltonian transition to this end. Suppose we
integrate forward from an initial state for L steps and propose the state at the last step. The MH acceptance
probability is what we’d expect, the minimum of 1 and the ratio of the proposal densities and the target
densities (which here are the joint space densities). We also make the Hamiltonian transition reversible so
that we cann get non-zero ratio of proposal densities. We do this by flipping the sign of momentum for the
proposal state.23

Acceptance Probability = min
[
1, Q(q, p|q′,−p′)π(q′,−p′)

Q(q′,−p′|q, p)π(q, p)

]
= min

[
1, π(q′,−p′)

π(q, p)

]
= min

[
1, exp(−H(q′,−p′))

exp(−H(q, p))

]
= min [1, exp(−H(q′,−p′) +H(q, p))]

For optimal performance you actually have to average the proposals for all states along the Hamiltonian
trajectory into one proposal. However we do not go into the details of this here. There are also ways of
diagnosing poorly chosen kinetic energies, regions of high curvature, and understanding the limitations of
these diagnostics. These are left to Betancourt (2017).

4.6 HMC Algorithm

As mentioned above, Hamiltonian Monte Carlo is a form of Metropolis-Hastings MCMC sampling method.
Unsuprisingly, HMC follows a similar progression as the MH approach discussed above. Given that we’re at
a certain state in the target distribution state space, we fisrt propose a new value for momentum. Next we
update the state in the joint space by traversing the Hamiltonian trajectory in joint space. We then accept or
reject the proposed updated state based on the acceptance probability. We then marginalize to get the new
state in the original state space. Below are the details of how a HMC algorithm might be implemented.24

23See Betancourt (2017) for more details. See Handcock (2020) a similar formulation.
24Handcock (2020)
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Hamiltonian Monte Carlo Algorithm

1. Initialize position at q.
2. For 1 to n:
3. Draw p ~ pi(p|q).
4. Draw u ~ Uniform[0,1].
5. For 1 to L:
6. p(l+1/2) = p(l) - eps/2 * dV/dq * q(l)
7. q(l+1) = q(l) + eps * p(l+1/2)
8. p(l+1) = p(l+1/2) - eps/2 * dV/dq * q(l+1)
9. Proposal State is (q(L),p(L)).
10. Calculate Acceptance Probability a = min(1,exp(-H(q(L),-p(L)) + H(q,p))).
11. If u<a, accept (q(L),p(L)).
12. Else stay at (q,p).
13. Discard momentum.

5 Probabilistic Programming Languages & Stan

Probabilistic programminng languages are tools for statistical modeling.25 They facilitate and abstract away
details of building many probability models, allowing users to quickly and easily work with such models. The
goal of probabilitsic programming languages is to make the analysis of these models easy and the focus of
the users time, rather than just constructing and executing them. Importantly, probabilistic programming
languages are particularly well suited to Bayesian inference, hence their discussion here.

Stan26 is a popular C++ based probabilistic programming language with interfaces in R, Python, Julia,
and Matlab. We will be using the rstan R library below. Stan makes Bayesian inference and modeling
straightforward with code written in Stan looking like statistical notation. In particular, Stan makes sampling
from posterior probability distributions very easy and efficient. It does this by implementing a variant of
Hamiltonian Monte Carlo called the no-U-turn sampler that very efficiently explores the states of the posterior
distribution of interest.27

Stan’s implementation of HMC addresses the practical optimization choices mentioned above. That is, Stan
uses a multivariate normal distribution for the conditional distribution of momentum that does not depend
on position. This is the Euclidean-Gaussian distribution mentioned above. Stan uses the Leapfrog integrator
and introduces the Metropolis-Hastings acceptance step. Stan also uses the no-U-turn termination criterion
for determining integration time.28 These optimizations make Stan extremely fast. However, all the details
of HMC as used by Stan are hidden away from the user. Instead, the user is able to utilize this state-of-the-
art sampling algorithm for a wide range of applications without actually understanding HMC or its variants.
Thus, application based case studies like Lee, Feller, and Rabe-Hesketh (2019) don’t need to mention what
Stan is doing “under the hood.” This makes for a very focused user modeling experience.

As such, we’ll now discuss some of the details of Stan from the users perspective. We focus on the structure
and components of a Stan program in R.29 Writing data generating models in Stan is straignforward. A
Stan program is composed of blocks that each have a specific task.

25Sampson (2016)
26Stan (n.d.a)
27Gelman, Lee, and Guo (2015)
28Stan (n.d.b)
29This section draws on Savage (2020).
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The blocks that typically appear in Stan programs include:

• functions - define functions to be used later

• data - identify data to be used

• transformed data - transform data

• parameters - identify the unknowns to be estimated, including any restrictions on their values

• transformed parameters - transform parameters and/or data

• model - define probability model

• generated quantities - generate outputs from the model including posterior predictions

As we’ll see in the next section, Stan programs look like statistical notation and are easy to interpert, with
the focus on the model and analysis and not on syntax or how to efficiently sample from the posterior
distributions of interest.

6 Example Application

In this section, we will work through an example of model-based Bayesian causal inference from a randomized
experiment using Stan. This example follows Chapter 8 “Model-Based Inference for Completely Randomized
Experiments” of Imbens and Rubin (2015)30 and uses the well-studied National Supported Work (NSW)
experimental dataset.

We will work in the Bayesian causal inference framework described above and will revisit some of the key
ideas here. In particular, the potential outcomes are considered random vsariables and, thus, so are any
functions of them like the average treatment effet or median treatment effect. Since the causal quantities of
interest are random variables, we can think about their probability distribution.

We build a model of these potential outcomes that depends on some unknown model parameters. We use
the observed data to learn the distribution of these unknowns. We then draw values from the distribution of
these unknowns and use these to impute the missing potential outcomes from the hypothesized model. We
can then do inference on any causal estimand of interest, τ = τ(Y0, Y1, D,X), where each of the arguments
here are vectors of the potential outcomes, the treatment assignments, and covariates, respectively. As
before, we require SUTVA or row interchangability of τ .

Since any dataset can only ever have half of the potential outcomes for a population, there will never be direct
empirical information on the dependence between treated and control potential outcomes. So modeling this
dependency is a key focus here. Note, however, that the potential outcomes (and causal estimands) are well
defined regrdless of how they or treatment assignment are modeled.

As discussed above, the goal is to get the conditional distribution over the vector of missing potential
outcomes given the observed potential outcomes and treatment assignments: Pr(Y mis|Y obs, D). Then we
can infer the distribution of causal quantities of interest by writing them as functions of the missing and
observed data.

30This example is also discussed in Lee, Feller, and Rabe-Hesketh (2019) with a description of how Stan can be used for such
an application.
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6.1 NSW Data

Before getting into the modeling, we first quickly discuss the data in its own right. The NSW data are from
an experiment on a job training program for male workers disadvantaged in the job market in the 1970’s. The
data consist of information on each individual like age, years of education, whether they have been married,
whether they finished high school, and ethnicity. The data also has measures of pre-training earnings in
1975 and in the one to two years before training. There is also a dummy for whether the individuals had
zero earnings in 1975 or in the two years before training (called 1974 earnings). Finally, the outcome we’re
interested in is earnigns in 1978. There are 445 men in the data; 260 were placed in the control group;
185 were placed in the treatment group. Earnings are in thousands of dollars. In general, annual earnings
are very low for the individuals. There is a slight imbalance between the treatment and control groups on
ethnicity, degrees, and individuals with zero income in 1975. Summary statistics for the information in the
data are presented below.31 This includes balance t-tests for differences in means and KS-tests for differences
in distribution. Note that we also run this balance test on the outcome of interest. We discuss this result in
more detail below.

Table 1: NSW Summary Statistics

Covariate Mean SD Average Controls Average Treated T pval KS pval
Age age 25.37 7.10 25.05 25.82 0.27 0.52
Black black 0.83 0.37 0.83 0.84 0.15 0.01
Education educ 10.20 1.79 10.09 10.35 0.65 NA
Hispanic hisp 0.09 0.28 0.11 0.06 0.06 NA
Married married 0.17 0.37 0.15 0.19 0.33 NA
No Degree nodegr 0.78 0.41 0.83 0.71 0.00 NA
Earnings 1974 re74 2.10 5.36 2.11 2.10 0.98 0.56
Earnings 1975 re75 1.38 3.15 1.27 1.53 0.39 0.05
Earnings 1978 re78 5.30 6.63 4.55 6.35 0.01 0.04
Treatment Indicator treat 0.42 0.49 NA NA NA NA
Zero Earnings 1974 u74 0.73 0.44 0.75 0.71 0.33 NA
Zero Earnings 1975 u75 0.65 0.48 0.68 0.60 0.07 NA

We calcualte the ATE using the simple difference in means estimator mentioned in the initial potential out-
comes section above, which is identified here because of randomization. We also calculate the corresponding
standard error and 95% confidence interval. This will be useful for comparison with the ATE estimate we
get from the Bayesian approach and the posterior distribution for the ATE. We see that the treatment effect
of the jobs program on earnings in thousands of dollars is 1.79, with a standard error of 0.67.

Table 2: Difference in Means Estimate of ATE

Estimate SE CI Low CI High
1.79 0.67 1.73 1.86

31This replicates Table 8.1 in Imbens and Rubin (2015).
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6.2 Review of Bayesian Modeling and Causal Inference

The Bayesian approach starts with the joint distribution of the potential outcomes.32 Under some rela-
tively unrestrictive restrictions33, we can model this as the integral over the product of IID individual-level
distributions, where θ are unknown parameters and Pr(θ) is our prior over these parameters.

Pr(Y0, Y1) =
∫ N∏

i=1
Pr(Y0i, Y1i|θ)Pr(θ)dθ

How to model Pr(Y0i, Y1i|θ) is difficult and usually requires subject matter expertise. Though results can
be robust to this modeling decision in randomized experiments as we are discussing here. Below we’ll use a
multivariate normal for this. How to choose the prior, Pr(θ), also requires care. But results are generally
pretty robust to this choice. We’ll also use normals for this below.

In observational studies, we would also need to model the treatment assignment mechanism, Pr(D|Y0i, Y1i),
but randomization makes this unnecessary here. For our purposes, Pr(D|Y0i, Y1i) = 1/

(
N
Nt

)
.34

The Bayesian approach consists of four parts to move from our observed data to a posterior distribution of
causal quantity of interest given the observed data.

• Derive Pr(Y mis|Y obs, D, θ).
• Derive Pr(θ|Y obs, D).
• Combine Pr(Y mis|Y obs, D, θ) and Pr(θ|Y obs, D) to get Pr(Y mis|Y obs, D), by integrating over θ.
• Use τ(Y0, Y1) and Pr(Y mis|Y obs, D) to get Pr(τ |Y obs, D).

These steps follow the steps outlined in greater detail above. Once we have the posterior over τ (which could
be ATE or ATT or any causal quantity of interest) we can then calculate the posterior mean or any other
summary of the posterior.

In many settings analytical solutions to the above are not feasible or are very difficult due to having to
evaluate a complicated intergral. A simulation approach, however, is easy to implement and more broadly
applicable than analytic methods for deriving the posterior. This approach involves imputation of the
missing potential outcomes. To do this, we use Pr(Y mis|Y obs, D, θ) and Pr(θ|Y obs, D) to repeatedly impute
the missing potential outcomes.

That is, we repeat the following steps many times to get a simulated posterior for τ .

• First, we draw θ ∼ Pr(θ|Y obs, D).
• Second, we input this value into Pr(Y mis|Y obs, D, θ) to impute all of the missing potential outcomes.

Note that we do not impute each missing potential outcome seperately. We impute all of them together
without redrawing values for θ.

• This can be used to get an estimate of τ .

We can then take the average or other summary statistics of the simiulated posterior of τ to estimate our
causal quantities of interest.

32This section draws on Imbens and Rubin (2015) Section 8.4-8.5.
33These include row-interchangability and appealing to Finetti’s theorem. See Imbens and Rubin (2015) page 152.
34Note that

∑N

i=1 Di = Nt.
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6.3 Model Choices

We’ll outline the modeling choices we’ve made here. We assume an underlying distribution for the joint
distribution of the potential outcomes that is a multivariate normal distribution with parameter vector θ.
In our analysis, we assume that the potential outcomes are independent (i.e., that correlation, ρ, is zero);
we don’t use the covariates; and we we assume different variances for treatment and control units.

Pr(Y0i, Y1i|θ) ∼ Normal
((

µc

µt

)
,

(
σ2

c ρσcσt

ρσcσt σ2
t

))
The model we assume for the unknown parameters, conditional on the observed data, Pr(θ|Y obs, D), is
comprised of a prior over the unobesrved parameters and the likelihood of the observed data, given these
parameters. That is, Pr(θ|Y obs, D) ∝ Pr(θ)Pr(Y obs|D, θ). Note that due to randomization we don’t need to
worry about modeling the treatment assignment.

We assume normal priors for µc, µt, σc, σt. Note that we actually assume that µc = α and that µc = α + τ
and place normal priors over α and τ .

α ∼ Normal(0, 100)
τ ∼ Normal(0, 100)
σc ∼ Normal(0, 100)
σt ∼ Normal(0, 100)

The likelihood, Pr(Y obs, D|θ), can be derived35 and is also normal. Note that because we only observe one
potential outcome per unit, the likelihood does not depend on ρ.

Pr(Y obs|D, θ) ∼ Normal(α+Dτ,Dσt + (1−D)σc)

With the priors and likelihood, we are able to draw from Pr(θ|Y obs, D). We can then use the values we get
for the parameters in the model for missing potential outcomes, conditional on the unknown parameters,
Pr(Y mis|Y obs, D, θ), which will also be normal. We can write down two seperate equations. One for imputing
missing control potential outcomes; and one for imputing missing treatment potential outcomes.

Pr(Y1i|Y0i, θ,Di = 0) ∼ Normal
(
µt + ρ

σt

σc
(Y0i − µc), σ2

t (1− ρ2)
)

Pr(Y0i|Y1i, θ,Di = 1) ∼ Normal
(
µc + ρ

σc

σt
(Y1i − µt), σ2

c (1− ρ2)
)

In the above, τ is the super-population average treatment effect and is our causal quantity of interest. We’ll
also calculate a finite population ATE.

6.4 Analysis with R and Stan

We now turn to analyzing the NSW data in R using Stan for sampling from the posterior distributions. Our
goal is to replicate results from Table 8.6 in Imbens and Rubin (2015).36 First, we define our Stan program.
We do this in R, rather than creating an additional Stan program file for ease of presentation here. However,
the Stan documentation suggests using a seperate file. The program inlcudes 4 blocks that correspond to the
block types discussed above: data, parameters, model, and generated quantities. As mentioned above,
Stan code reads like statistical notation and the details of the syntax should be intuitive. We define what

35See pages 158-159 of Imbens and Rubin (2015) for an example how such a likelihood is derived.
36This section follows Lee, Feller, and Rabe-Hesketh (2019).
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the data will look like (and bounds for them), what the unknown parameters are (and bounds for them),
what our priors are, what the likelihood is, and what the posterior looks like for missing potential outcomes.
We also calculate the finite-sample ATE. The program is annotated for further elucidation.

sp =
"data {

int<lower=0> N; // sample size
vector[N] y; // observed outcomes
vector[N] d; // treatment assignments
real<lower=-1,upper=1> rho; // assumed correlation between the potential outcomes

}
parameters {

real alpha; // super-population control average
real tau; // super-population average treatment effect
real<lower=0> sigma_c; // residual SD for the control
real<lower=0> sigma_t; // residual SD for the treated

}
model {

alpha ~ normal(0, 100); // prior over super-population control average
tau ~ normal(0, 100); // prior over super-population average treatment effect
sigma_c ~ normal(0, 100); // prior over residual SD for the control
sigma_t ~ normal(0, 100); // prior over residual SD for the treated
y ~ normal(alpha + tau*d, sigma_t*d + sigma_c*(1 - d)); // likelihood of observed outcomes

}
generated quantities{

real tau_fs; // finite-sample ATE
real y0[N]; // potential outcome if D = 0
real y1[N]; // potential outcome if D = 1
real tau_unit[N]; // unit-level treatment effect
for(n in 1:N){

real mu_c = alpha; // super-population control average
real mu_t = alpha + tau; // super-population treatment average
if(d[n] == 1){

y0[n] = normal_rng(mu_c + rho*(sigma_c/sigma_t)*(y[n] - mu_t),
sigma_c*sqrt(1 - rho^2)); // imputed missing control potential outcome for treated
y1[n] = y[n]; // observed treated potential outcome for treated

}else{
y0[n] = y[n]; // observed control potential outcome for control
y1[n] = normal_rng(mu_t + rho*(sigma_t/sigma_c)*(y[n] - mu_c),
sigma_t*sqrt(1 - rho^2)); // imputed missing treated potential outcome for control

}
tau_unit[n] = y1[n] - y0[n]; // unit-level treatment effect

}
tau_fs = mean(tau_unit); // finite-sample ATE

}"

We combine the data into a list to give to the Stan program. As mentioned above, the outcome variable is
1978 earnings. The treatment indicator is whether an individual participated in the jobs program. N is the
number of individuals in the study. ρ is the correlation between potential outcomes; here we assume ρ = 0.

y = lalonde$re78
d = lalonde$treat
N = nrow(lalonde)
rho = 0
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data = list(N = N, y = y, d = d, rho = rho)

Now we run the Stan program from above on the NSW data. This will create Markov chains that sample
from the posterior over the model parameters (using the priors and likelihood) which are then used as inputs
to the distribution over missing potential outcomes which allows us to impute the missing potential outcomes
and therefore calculate the finite sample ATE. We choose to run with 4000 Markov chain iterations on four
seperate Markov chains each with warm-up period of 500 iterations. Note that the results of running the
Stan program will aggregate over all 4 chains and running seperate chains allows us to compare the behavior
of the chains which allows us to check the robustness of the procedure.

model = stan(model_code = sp,data = data,iter = 4000, chains = 4,warmup = 500)

After running the Stan program, we print a summary of the results. First, it is important to note that the
R̂ statistic for all model parameters is 1. This indicates that there was not much variation across the four
Markov chains and no evidence of pathological geometries in the state space. We see that all the chains
converged. Note that the output of running the Stan program is not a single estimate for each parameter
but a Markov chain that represents a simulated posterior distribution over each parameter. We are able to
look at the mean value, the standard error of the mean value, the standard deviation of the distribution, as
well as percentiles and effective degrees of freedom.

We see that our super-population estimate is similar to our difference in means estimate of ATE. The finite
sample estimate is also similar. These also are comparable to the estimates in Table 8.6 in Imbens and Rubin
(2015) and Lee, Feller, and Rabe-Hesketh (2019).

print(model, pars = c("tau", "tau_fs","alpha", "sigma_c", "sigma_t"),
probs = c(0.1, 0.5, 0.9), digits = 3)

## Inference for Stan model: 14455e842847e41fd9a53e7834530fa5.
## 4 chains, each with iter=4000; warmup=500; thin=1;
## post-warmup draws per chain=3500, total post-warmup draws=14000.
##
## mean se_mean sd 10% 50% 90% n_eff Rhat
## tau 1.782 0.006 0.680 0.919 1.784 2.649 12683 1.000
## tau_fs 1.786 0.004 0.502 1.150 1.782 2.419 14095 1.001
## alpha 4.557 0.003 0.348 4.106 4.556 5.006 12311 1.000
## sigma_c 5.511 0.002 0.241 5.208 5.502 5.823 12429 1.000
## sigma_t 7.921 0.004 0.419 7.397 7.903 8.468 12795 1.000
##
## Samples were drawn using NUTS(diag_e) at Thu Jun 11 18:33:43 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

We plot the actual samples across iterations, including the warm-up period. We can see that the Markov
chains exhibit the expected behaviour: first exploration of the state space outside the typical set, then, once
the typical set is found, exploration only within the typical set.

We also plot the posterior distributions of the model parameters. These show the same mean point esti-
mates as discussed above, but make clear that what we actually are looking at is a full simulated posterior
distribution over the model parameters. Hence, we are able to calculate any summary statistic of interest
for the causal quantities of interest. We also plot a red line at the simple difference in means estimate from
above. Note that here we see that the distribution for the finite-sample ATE is narrower than that for the
super-popualtion ATE.

20



sigma_c sigma_t

tau tau_fs alpha

0 1000 2000 3000 4000 0 1000 2000 3000 4000

0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 1000 2000 3000 4000

0.0

2.5

5.0

7.5

−2

0

2

4

0.0

2.5

5.0

7.5

10.0

12.5

0

2

4

2.5

5.0

7.5

chain

1

2

3

4

sigma_t

sigma_c

alpha

tau_fs

tau

0.0 2.5 5.0 7.5 10.0

with means and 80% intervals

Posterior Distributions of Model Parameters

There are many other versions of this analysis that can be done. We could incorporate covariates, alter the
assumptions we make, or alter the models we choose. See Imbens and Rubin (2015) and Lee, Feller, and
Rabe-Hesketh (2019) for examples of some of the alternatives. Similar approaches can also be applied to
observational studies.
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7 Conclusion

This paper has explored the the conceptual foundations of and connections between the potential outcomes
framework, Bayesian causal inference, Hamiltonian Monte Carlo, and probabilistic programming languages
like Stan. We also saw how these ideas can be used together in a simple example application using the
National Supported Work (NSW) experimental dataset. We followed Lee, Feller, and Rabe-Hesketh (2019)
and Imbens and Rubin (2015) in exploring how Hamiltonian Monte Carlo and probabilistic programming
languages can be used in model-based Bayesian causal inference, focusing on randomized experiments. The
potential outcomes framework for causal inference can be applied in a model-based Bayesian approach, in
which unobserved potential outcomes are viewed as random variables. Assumptions about the model for
the joint distribution over the potential outcomes and the model for the treatment assignment mechanism
can be used to derive a model for the posterior distribution over the unobserved potential outcomes. This
allows us to impute the missing potential outcomes conditional on the observed data. We then estimate
whichever causal quantities are of interest. We use a simulation approach to build a posterior distribution
for the causal quantities of interest. We employ Hamiltonian Monte Carlo to do the required sampling to
avoid issues more traditional sampling method can have in high dimensions. Specifically, the probabilistic
programming language Stan allows us to write code that looks like statistical notation to model and sample
from the posterior distribution over our unobserved potential outcomes. Thus, we are very easily able to
implement the simulation approach to Bayesian inference. Causal inference and Hamiltoniam Monte Carlo
have both become more and more influential over recent years. Innovations like probabilistic programming
languages like Stan promise to push the capabilities of causal inference further than ever before.
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